RUS  ENG
Full version
PEOPLE

Krasovskii Aleksandr Arkad'evich

Publications in Math-Net.Ru

  1. Self-organizing extrapolation controllers for power systems: History and prospects

    Avtomat. i Telemekh., 2006, no. 5,  48–53
  2. Design of Polynomial Self-oscillating Systems of Fifth to Seventh Order

    Avtomat. i Telemekh., 2002, no. 10,  44–57
  3. Scientific knowledge and the state of the theory of control processes

    Avtomat. i Telemekh., 2000, no. 4,  3–19
  4. Theory of a self-organizing optimal controller of binomial type in deterministic-stochastic approximation

    Avtomat. i Telemekh., 1999, no. 5,  97–112
  5. Multistage inertial vibration protection and aerogravimetry

    Avtomat. i Telemekh., 1998, no. 2,  153–164
  6. Adaptive Polynomial Observers and Identification at Critical Operation Conditions

    Avtomat. i Telemekh., 1996, no. 10,  142–155
  7. Attractor Synthesis with Applications to Active Vibro-Protection Systems

    Avtomat. i Telemekh., 1996, no. 7,  18–31
  8. An algorithmic basis of optimal adaptive controllers of a new class

    Avtomat. i Telemekh., 1995, no. 9,  104–116
  9. A concept of a new hardware and algorithmic toolbox in seismometrics

    Avtomat. i Telemekh., 1995, no. 4,  157–169
  10. A sufficient condition for the stability of polynomial cubic dynamical systems

    Dokl. Akad. Nauk, 344:5 (1995),  605–606
  11. Conditions for the existence of an attractor in the form of a quadric for polynomial dynamical systems

    Dokl. Akad. Nauk, 344:4 (1995),  463–464
  12. An adaptive optimal controller with a variable order of observer and extrapolation time

    Avtomat. i Telemekh., 1994, no. 11,  97–112
  13. Active-passive shock-absorption and gravimetric observations on a mobile base

    Avtomat. i Telemekh., 1994, no. 6,  62–73
  14. Layer structures and systems of active damping of threshold sensitivity

    Avtomat. i Telemekh., 1994, no. 2,  38–51
  15. Optimal control with adaptation of extrapolation time

    Avtomat. i Telemekh., 1993, no. 2,  148–157
  16. The selective-averaging method for solving multi-extremal problems

    Avtomat. i Telemekh., 1992, no. 9,  117–128
  17. Erratum: “Continuous algorithms and the stochastic dynamics of searching for an extremum”

    Avtomat. i Telemekh., 1991, no. 10,  189
  18. Prediction-Optimization Model of the Actions of Operator

    Avtomat. i Telemekh., 1991, no. 10,  144–153
  19. Continuous algorithms and the stochastic dynamics of searching for an extremum

    Avtomat. i Telemekh., 1991, no. 4,  55–65
  20. A stochastic qualitative theory of the search for an extremum

    Dokl. Akad. Nauk SSSR, 319:6 (1991),  1346–1348
  21. Nonclassical optimization and the qualitative theory of optimal control

    Dokl. Akad. Nauk SSSR, 317:5 (1991),  1062–1065
  22. Prediction-optimization model for the activity of a human operator

    Dokl. Akad. Nauk SSSR, 317:1 (1991),  47–50
  23. Problems of physical control theory

    Avtomat. i Telemekh., 1990, no. 11,  3–28
  24. On the paper by G.E. Kolosov, K.K. Livanov “Quality analysis of a quasi-optimal control algorithm”

    Avtomat. i Telemekh., 1990, no. 9,  182–183
  25. Dangerous entropy instability of a control system

    Dokl. Akad. Nauk SSSR, 313:1 (1990),  16–18
  26. Fast linear interpolation of functions of several variables in digital simulation systems

    Dokl. Akad. Nauk SSSR, 312:2 (1990),  280–283
  27. Double linearization and fast numerical modeling of nonlinear dynamical systems

    Dokl. Akad. Nauk SSSR, 308:6 (1989),  1316–1319
  28. Cyclic estimation in primary filtering of sensor signals

    Avtomat. i Telemekh., 1988, no. 6,  52–60
  29. Extending the principle of maximal generalized work

    Avtomat. i Telemekh., 1987, no. 1,  13–23
  30. Stochastic principle of the minimum of generalized work

    Dokl. Akad. Nauk SSSR, 287:6 (1986),  1345–1349
  31. Generalization of the solution of the problem of control optimization with a nonclassical functional

    Dokl. Akad. Nauk SSSR, 284:4 (1985),  808–811
  32. An algorithm for evaluating a continuous process with a discontinuous observation function

    Dokl. Akad. Nauk SSSR, 278:6 (1984),  1323–1325
  33. An estimation algorithm with a retrospective model

    Dokl. Akad. Nauk SSSR, 275:3 (1984),  569–572
  34. A general condition favoring sharp estimation

    Dokl. Akad. Nauk SSSR, 273:5 (1983),  1067–1070
  35. Optimal estimation in distributed systems described by the Green function

    Avtomat. i Telemekh., 1981, no. 10,  53–62
  36. Estimation of a field at the vector diffuse measurement

    Dokl. Akad. Nauk SSSR, 256:5 (1981),  1061–1064
  37. Sufficient conditions for accuratefestlmation of a nonlinear process

    Avtomat. i Telemekh., 1980, no. 4,  41–48
  38. Appraising a steady-state field from a diffuse image

    Dokl. Akad. Nauk SSSR, 249:5 (1979),  1071–1073
  39. Condition of observability of nonlinear processes

    Dokl. Akad. Nauk SSSR, 242:6 (1978),  1265–1268
  40. A universal algorithm for optimal control of continuous processes

    Avtomat. i Telemekh., 1977, no. 2,  5–13
  41. Optimal algorithms in the problem of identification with an adaptive model

    Avtomat. i Telemekh., 1976, no. 12,  75–82
  42. Suboptimal algorithm of evaluation and identification of continuous processes

    Dokl. Akad. Nauk SSSR, 231:4 (1976),  826–828
  43. An adaptive algorithm of suboptimal estimation

    Dokl. Akad. Nauk SSSR, 230:3 (1976),  538–540
  44. On the limiting sensitivity of instruments with large relaxation time

    Dokl. Akad. Nauk SSSR, 223:1 (1975),  83–86
  45. Iterational solution of the Kolmogorov equation and suboptimal estimation

    Dokl. Akad. Nauk SSSR, 219:1 (1974),  49–52
  46. Iterative solution of Kolmogorov's equation in statistical dynamics of continuous systems

    Dokl. Akad. Nauk SSSR, 216:3 (1974),  485–487
  47. Solution of the Fokker–Planck–Kolmogorov equation by a series method

    Dokl. Akad. Nauk SSSR, 205:3 (1972),  550–552

  48. Рецензия на книгу О. А. Степанова “Применение теории нелинейной фильтрации в задачах обработки навигационной информации”

    Avtomat. i Telemekh., 1999, no. 7,  185–186


© Steklov Math. Inst. of RAS, 2026