RUS  ENG
Full version
PEOPLE

Gutnova Alina Kazbekovna

Publications in Math-Net.Ru

  1. On a Class of Completely Positive Mappings

    Mat. Zametki, 118:1 (2025),  44–59
  2. On Shilla graphs with $b = 6$ and $b_{2}\ne c_{2}$

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:2 (2022),  74–83
  3. Distance-regular graphs with intersection arrays $\{7,6,6;1,1,2\}$ and $\{42,30,2;1,10,36\}$ do not exist

    Vladikavkaz. Mat. Zh., 23:4 (2021),  68–76
  4. Automorphisms of a distance regular graph with intersection array $\{48,35,9;1,7,40\}$

    Vladikavkaz. Mat. Zh., 22:2 (2020),  24–33
  5. On sufficient conditions for the closure of an elementary net

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 7:2 (2020),  230–235
  6. Distance-regular locally $pG_{s-6}(s,t)$-graphs of diameter greater than 3

    Trudy Inst. Mat. i Mekh. UrO RAN, 24:3 (2018),  34–42
  7. On automorphisms of a strongly regular graph with parameters $(117,36,15,9)$

    Vladikavkaz. Mat. Zh., 20:4 (2018),  43–49
  8. On automorphisms of a distance-regular graph with intersection of arrays $\{39,30,4; 1,5,36\}$

    Vladikavkaz. Mat. Zh., 19:2 (2017),  11–17
  9. On automorphisms of a distance-regular graph with intersection array $\{243,220,1;1,22,243\}$

    Sib. Èlektron. Mat. Izv., 13 (2016),  1040–1051
  10. Extensions of pseudogeometric graphs for $pG_{s-5}(s,t)$

    Vladikavkaz. Mat. Zh., 18:3 (2016),  35–42
  11. Automorphisms of a strongly regular graph with parameters $(1197,156,15,21)$

    Vladikavkaz. Mat. Zh., 17:2 (2015),  5–11
  12. Extensions of pseudo-geometric graphs of the partial geometries $pG_{s-4}(s,t)$

    Vladikavkaz. Mat. Zh., 17:1 (2015),  21–30
  13. On automorphisms of a strongly regular graph $(245,64,18,16)$

    Sib. Èlektron. Mat. Izv., 8 (2011),  4–18
  14. On graphs the neighbourhoods of whose verticesare pseudo-geometric graphs for $GQ(3,3)$

    Tr. Inst. Mat., 18:1 (2010),  28–35

  15. V. A. Koibaev (on his 70th anniversary)

    Vladikavkaz. Mat. Zh., 27:3 (2025),  136–138


© Steklov Math. Inst. of RAS, 2026