RUS  ENG
Full version
PEOPLE

Ryashko Lev Borisovich

Publications in Math-Net.Ru

  1. Stochastic sensitivity analysis of dynamic transformations in the “two prey – predator” model

    Computer Research and Modeling, 14:6 (2022),  1343–1356
  2. Analysis of stochastic sensitivity of Turing patterns in distributed reaction–diffusion systems

    Izv. IMI UdGU, 55 (2020),  155–163
  3. Modality analysis of patterns in reaction-diffusion systems with random perturbations

    Izv. IMI UdGU, 53 (2019),  73–82
  4. Analysis of additive and parametric noise effects on Morris – Lecar neuron model

    Computer Research and Modeling, 9:3 (2017),  449–468
  5. Analysis of noise-induced destruction of coexistence regimes in ‘prey-predator’ population model

    Computer Research and Modeling, 8:4 (2016),  647–660
  6. Stochastic generation of bursting oscillations in the three-dimensional Hindmarsh–Rose model

    J. Sib. Fed. Univ. Math. Phys., 9:1 (2016),  79–89
  7. Noise-induced intermittency and transition to chaos in the neuron Rulkov model

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016),  453–462
  8. Analysis of stochastic attractors for time-delayed quadratic discretemodel of population dynamics

    Computer Research and Modeling, 7:1 (2015),  145–157
  9. Analysis of stochastic dynamics in discrete-time macroeconomic Kaldor model

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:1 (2015),  60–70
  10. Analysis of noise-induced bursting in two-dimensional Hindmarsh-Rosemodel

    Computer Research and Modeling, 6:4 (2014),  605–619
  11. Stochastic generation of high amplitude oscillations in two-dimensional Hindmarsh–Rose model

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 2,  76–85
  12. On controlling stochastic sensitivity of oscillatory systems

    Avtomat. i Telemekh., 2013, no. 6,  42–56
  13. Splitting bifurcation of stochastic cycles in the FitzHugh–Nagumo model

    Nelin. Dinam., 9:2 (2013),  295–307
  14. Noise-induced transitions for business cycles goodwin model

    St. Petersburg Polytechnical University Journal. Computer Science. Telecommunication and Control Sys, 2013, no. 6(186),  117–125
  15. Noise-induced transitions and deformations of stochastic attractors for one-dimensional systems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 2,  3–16
  16. On stochastic sensitivity control in discrete systems

    Avtomat. i Telemekh., 2010, no. 9,  103–119
  17. Backward stochastic bifurcations of the discrete system cycles

    Nelin. Dinam., 6:4 (2010),  737–753
  18. Regular and stochastic auto-oscillations in the reological model

    Nelin. Dinam., 5:4 (2009),  603–620
  19. On control of stochastic sensitivity

    Avtomat. i Telemekh., 2008, no. 7,  78–89
  20. Stabilization of stochastically perturbed nonlinear oscillations

    Avtomat. i Telemekh., 2007, no. 10,  155–165
  21. Analysis of stability in quadratic mean of the limit cycles of nonlinear stochastic systems

    Avtomat. i Telemekh., 2007, no. 10,  79–91
  22. Control of stochastically perturbed self-oscillations

    Avtomat. i Telemekh., 2005, no. 6,  104–113
  23. Asymptotic expansion of the quasipotential for a stochastically perturbed nonlinear oscillator

    Differ. Uravn., 35:10 (1999),  1319–1324
  24. Regulators with noise in the dynamic component unit

    Avtomat. i Telemekh., 1995, no. 10,  59–70
  25. Estimation by means of a filter that contains random noise

    Avtomat. i Telemekh., 1992, no. 2,  75–82
  26. Evaluation in controlled stochastic systems subjected to multiplicative noise

    Avtomat. i Telemekh., 1984, no. 6,  88–94
  27. A linear filter in the stabilization problem for stochastic systems with incomplete information

    Avtomat. i Telemekh., 1979, no. 7,  80–89

  28. To the memory of Èmmanuil Èl'evich Shnol'

    Uspekhi Mat. Nauk, 72:1(433) (2017),  197–208


© Steklov Math. Inst. of RAS, 2026