RUS  ENG
Full version
PEOPLE

Rogachev Aleksandr Sergeevich

Publications in Math-Net.Ru

  1. Thermal explosion in Ta–Ti–Nb–V–W–C è Ta–Nb–V–Mo–W–C powder mixtures

    Fizika Goreniya i Vzryva, 61:1 (2025),  68–76
  2. Ignition and combustion of mechanically activated powder compositions (review). II. Combustion

    Fizika Goreniya i Vzryva, 60:5 (2024),  14–29
  3. Ignition and combustion of mechanically activated powder compositions (review). I. Ignition

    Fizika Goreniya i Vzryva, 60:5 (2024),  3–13
  4. Reactive multilayer nanofilms: time of scientific and technological maturity

    Usp. Khim., 93:1 (2024),  1–17
  5. Influence of the preparation method on amorphous-crystalline transition in Fe$_{84}$B$_{16}$ alloy

    Zhurnal Tekhnicheskoi Fiziki, 89:12 (2019),  1903–1909
  6. Mechanical activation of heterogeneous exothermic reactions in powder mixtures

    Usp. Khim., 88:9 (2019),  875–900
  7. Self-propagating crystallization waves in the TiCu amorphous alloy

    Pis'ma v Zh. Èksper. Teoret. Fiz., 104:10 (2016),  740–744
  8. Experimental verification of discrete models for combustion of microheterogeneous compositions forming condensed combustion products (Review)

    Fizika Goreniya i Vzryva, 51:1 (2015),  66–76
  9. Combustion of heterogeneous nanostructural systems (Review)

    Fizika Goreniya i Vzryva, 46:3 (2010),  3–30
  10. Modes of gasless combustion and macrostructure of combustion Front (for the Ti–Si system as an example)

    Fizika Goreniya i Vzryva, 45:4 (2009),  147–155
  11. Exothermic reaction waves in multilayer nanofilms

    Usp. Khim., 77:1 (2008),  22–38
  12. Microstructural aspects of gasless combustion of mechanically activated mixtures. I. High-speed microvideorecording of the Ni–Al composition

    Fizika Goreniya i Vzryva, 42:4 (2006),  61–70
  13. Fast and slow modes of the propagation of the combustion front in heterogeneous systems

    Pis'ma v Zh. Èksper. Teoret. Fiz., 84:1 (2006),  13–17
  14. Microstructure of heterogeneous mixtures for gasless combustion

    Fizika Goreniya i Vzryva, 40:5 (2004),  74–80
  15. Gasless combustion of Ti–Al bimetallic multilayer nanofoils

    Fizika Goreniya i Vzryva, 40:2 (2004),  45–51
  16. Deformation dynamics of a reactive medium during gasless combustion

    Fizika Goreniya i Vzryva, 39:5 (2003),  69–73
  17. Microheterogeneous mechanism of gasless combustion

    Fizika Goreniya i Vzryva, 39:2 (2003),  38–47
  18. Ionization in a combustion wave

    Fizika Goreniya i Vzryva, 38:4 (2002),  77–79
  19. Combustion of titanium with nonmetal nitrides

    Fizika Goreniya i Vzryva, 37:2 (2001),  51–56
  20. Macrokinetics of thermal explosion in a niobium-aluminum system. II. Phase-formation dynamics

    Fizika Goreniya i Vzryva, 36:2 (2000),  45–50
  21. Macrokinetics of thermal explosion in a niobium–aluminum system. I. Basic macrokinetic stages

    Fizika Goreniya i Vzryva, 36:2 (2000),  40–44
  22. Experimental study of the gas phase formed in the processes of self-propagating high-temperature synthesis

    Fizika Goreniya i Vzryva, 33:4 (1997),  55–64
  23. Combustion-front microstructure in heterogeneous gasless media (using as an example the 5Ti + 3Si system)

    Fizika Goreniya i Vzryva, 32:6 (1996),  68–81
  24. Macrokinetics of structural transformation during the gasless combustion of a titanium and carbon powder mixture

    Fizika Goreniya i Vzryva, 26:1 (1990),  104–114
  25. Gasless combustion in the system titanium-carbon-nickel

    Fizika Goreniya i Vzryva, 24:6 (1988),  86–93
  26. On possibility of high-temperature superconducting $\mathrm{TiC}$ phase near low edge of homogeneous regions

    Fizika Tverdogo Tela, 26:1 (1984),  286–288
  27. Ionization mechanism in ethylene-nitrogen oxide flames

    Fizika Goreniya i Vzryva, 16:6 (1980),  31–35


© Steklov Math. Inst. of RAS, 2026