|
|
Publications in Math-Net.Ru
-
Approximation by local parabolic splines constructed on the basis of interpolationin the mean
Ural Math. J., 3:1 (2017), 81–94
-
On uniform Lebesgue constants of third-order local trigonometric splines
Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016), 245–254
-
On uniform Lebesgue constants of local exponential splines with equidistant knots
Trudy Inst. Mat. i Mekh. UrO RAN, 21:4 (2015), 261–272
-
On Lebesgue constants of local parabolic splines
Trudy Inst. Mat. i Mekh. UrO RAN, 21:1 (2015), 213–219
-
Local exponential splines with arbitrary knots
Trudy Inst. Mat. i Mekh. UrO RAN, 20:1 (2014), 258–263
-
Local approximation by splines with displacement of nodes
Mat. Tr., 14:2 (2011), 73–82
-
Form preservation under approximation by local exponential splines of an arbitrary order
Trudy Inst. Mat. i Mekh. UrO RAN, 17:3 (2011), 291–299
-
Local $\mathcal L$-splines preserving the differential operator kernel
Sib. Zh. Vychisl. Mat., 13:1 (2010), 111–121
-
Approximation by local $\mathcal L$-splines that are exact on subspaces of the kernel of a differential operator
Trudy Inst. Mat. i Mekh. UrO RAN, 16:4 (2010), 272–280
-
Аппроксимация локальными параболическими сплайнами функций по их значениям в среднем
Trudy Inst. Mat. i Mekh. UrO RAN, 13:4 (2007), 169–189
-
Approximation by local exponential splines with arbitrary nodes
Sib. Zh. Vychisl. Mat., 9:4 (2006), 391–402
© , 2026