RUS  ENG
Full version
PEOPLE

Galyaev Andrei Alekseevich

Publications in Math-Net.Ru

  1. Analytical metric grids for statistical and spectral complexity diagrams

    Probl. Peredachi Inf., 61:1 (2025),  31–46
  2. Order statistics of the normalized spectral distribution for detecting weak signals in white noise

    Avtomat. i Telemekh., 2024, no. 12,  49–69
  3. Necessary extremum conditions and the Neustadt–Eaton method in the time-optimal control problem for a group of nonsynchronous oscillators

    Avtomat. i Telemekh., 2024, no. 6,  97–114
  4. Searching for a sub-optimal solution of the dynamic traveling salesman problem using the Monte Carlo method

    Avtomat. i Telemekh., 2024, no. 2,  103–119
  5. A new spectral measure of complexity and its capabilities for detecting signals in noise

    Dokl. RAN. Math. Inf. Proc. Upr., 518 (2024),  80–88
  6. Statistical and spectral complexity diagrams

    Probl. Peredachi Inf., 60:2 (2024),  25–35
  7. Modeling of the target's interception delay in an ADT game with one or two defenders

    Probl. Upr., 2024, no. 2,  83–94
  8. Constructing a map of locally optimal paths for a controlled moving object in a threat environment

    Probl. Upr., 2024, no. 1,  90–102
  9. On redistribution of targets between interceptors in moving targets traveling salesman problem

    UBS, 110 (2024),  87–112
  10. Optimization of interception plan for rectilinearly moving targets

    Avtomat. i Telemekh., 2023, no. 10,  18–36
  11. Statistical complexity as a criterion for the useful signal detection problem

    Avtomat. i Telemekh., 2023, no. 7,  121–145
  12. Neural network algorithm for intercepting targets moving along known trajectories by a Dubins' car

    Avtomat. i Telemekh., 2023, no. 3,  3–21
  13. Deep learning approach to classification of acoustic signals using information features

    Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023),  39–48
  14. The time-optimal control problem of sequential traversal of several points by a Dubins car

    Trudy Inst. Mat. i Mekh. UrO RAN, 29:3 (2023),  42–61
  15. About two-switching control class in the time-optimal control problem of two non-synchronous oscillators

    UBS, 101 (2023),  24–38
  16. Two optimal path planning problems for a moving object in the case of degeneration of necessary extremum conditions

    Avtomat. i Telemekh., 2022, no. 7,  3–32
  17. Extremum conditions for constrained scalar control of two nonsynchronous oscillators in the time-optimal control problem

    Dokl. RAN. Math. Inf. Proc. Upr., 505 (2022),  86–91
  18. Geometric approach to the problem of optimal scalar control of two nonsynchronous oscillators

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 215 (2022),  40–51
  19. Time-optimal interception of a moving target by a dubins car

    Avtomat. i Telemekh., 2021, no. 5,  3–19
  20. Synchronization and collective motion of a group of weakly coupled identical oscillators

    Avtomat. i Telemekh., 2020, no. 6,  62–87
  21. Trajectory optimality conditions for moving object with nonuniform radiation pattern

    Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020),  95–98
  22. Target survival probability estimation for the attackers–target–defenders problem

    Probl. Upr., 2020, no. 3,  70–77
  23. Moving object evasion from single detector at given speed

    Probl. Upr., 2020, no. 1,  83–91
  24. Energy-optimal control of harmonic oscillator

    Avtomat. i Telemekh., 2019, no. 1,  21–37
  25. A moving object evasion from detection in the threat environment

    UBS, 79 (2019),  112–184
  26. Minimum-time control problem for elastic and visco-elastic interaction between body and surface

    Probl. Upr., 2018, no. 4,  14–20
  27. Evasion of a moving object from detection by a system of observers: sensor-maneuvering search means

    Avtomat. i Telemekh., 2017, no. 8,  113–126
  28. Planning problem of object motion through area of random search

    Probl. Upr., 2017, no. 5,  77–83
  29. Scalar control of a group of free-running oscillators

    Avtomat. i Telemekh., 2016, no. 9,  3–18
  30. Evasion from Detection by a System of Heterogenous Observers: One Sensor and a Group of Detectors

    Probl. Upr., 2016, no. 3,  72–77
  31. On the mathematical model of one-dimensional impact of a chain of viscoelastic bodies

    Avtomat. i Telemekh., 2015, no. 10,  40–49
  32. Mobile object evasion from detection by a system of heterogeneous observers in threat environment

    Probl. Upr., 2015, no. 2,  31–37
  33. Evasion on plane from a single mobile observer in the conflict environment

    Avtomat. i Telemekh., 2014, no. 6,  39–48
  34. Spatial evasion of the rotating detection zone. II

    Avtomat. i Telemekh., 2013, no. 9,  125–142
  35. On the methods for calculation of grammians and their use in analysis of linear dynamic systems

    Avtomat. i Telemekh., 2013, no. 2,  53–74
  36. Optimization of the law of moving object evasion from detection under constraints

    Avtomat. i Telemekh., 2012, no. 6,  73–88
  37. On one problem of optimal control at the impact phase and unification of the interaction end instants

    Avtomat. i Telemekh., 2010, no. 12,  11–24
  38. On the problem of break-through between two sensors for a craft moving in the conflict environment

    Avtomat. i Telemekh., 2010, no. 5,  3–10
  39. On the detection functional in motion of an object in a threat environment

    Avtomat. i Telemekh., 2010, no. 4,  100–105
  40. Problem of optimal oscillator control for nulling its energy under bounded control action

    Avtomat. i Telemekh., 2009, no. 3,  24–33
  41. On the minimum of the detection functional for the motion of an object in a threat environment

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2009, no. 15,  99–106
  42. Nonlinear feedback-based control of the distribution of total energy between the degrees of freedom of a mechanical system. A quantum approach

    Avtomat. i Telemekh., 2008, no. 3,  17–28
  43. Impact of a system of material points against an absolutely rigid obstacle: A model for its impulsive action

    Avtomat. i Telemekh., 2006, no. 6,  27–40
  44. Optimal pulse control of dynamic systems in the shock phase

    Avtomat. i Telemekh., 2006, no. 1,  75–88
  45. The mobile object evasion from detection by group observers: sensor - maneuverable observer

    Avtomat. i Telemekh.,  0

  46. Mikhail M. Khrustalev (1938–2023)

    Avtomat. i Telemekh., 2024, no. 1,  124–126
  47. Addition to the article “A new spectral measure of complexity and its capabilities for detecting signals in noise”

    Dokl. RAN. Math. Inf. Proc. Upr., 518 (2024),  89–92
  48. Denis Nikolaevich Sidorov (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:4 (2024),  106–108
  49. Oleg Slavin – to the 60th birthday anniversary

    Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:4 (2023),  93–94
  50. Soloviev Sergey Yurievich (02/03/1955 - 09/22/2023). In memory of an outstanding algorithmist

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:4 (2023),  106–107
  51. Sergey Leonidovich Chernyshev (to Anniversary Since Birth)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:2 (2022),  125–127
  52. Рудаков Константин Владимирович (21.06.1954 – 10.07.2021). Памяти академика информатики

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:1 (2022),  128–130
  53. To the 75th anniversary of the birth of E.Ya. Rubinovich

    Avtomat. i Telemekh., 2021, no. 12,  6–7
  54. Vladimir Evgenievich Pavlovsky (22.05.1950–03.06.2020)

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 13:3 (2020),  116–118
  55. Spatial evasion of the rotating detection zone. I

    Avtomat. i Telemekh., 2013, no. 7,  143–158


© Steklov Math. Inst. of RAS, 2026