RUS  ENG
Full version
PEOPLE

Tkhai Valentin Nikolaevich

Publications in Math-Net.Ru

  1. Aggregation of conservative systems into the chain with an attractive cycle

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 12:2 (2025),  368–376
  2. An adaptive stabilization scheme for autonomous system oscillations

    Avtomat. i Telemekh., 2024, no. 9,  77–92
  3. An attracting cycle in a coupled mechanical system with phase shifts in subsystem oscillations

    Avtomat. i Telemekh., 2023, no. 12,  120–132
  4. Stabilization of oscillations of a controlled autonomous system

    Avtomat. i Telemekh., 2023, no. 5,  29–44
  5. Stabilization of oscillations of a controlled reversible mechanical system

    Avtomat. i Telemekh., 2022, no. 9,  94–108
  6. Aggregation of an autonomous system with an attracting cycle

    Avtomat. i Telemekh., 2022, no. 3,  41–53
  7. Cycle mode in a coupled conservative system

    Avtomat. i Telemekh., 2022, no. 2,  90–106
  8. Stabilization of a cycle in a coupled mechanical system

    Avtomat. i Telemekh., 2022, no. 1,  67–76
  9. Equilibria and oscillations in a reversible mechanical system

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 8:4 (2021),  709–715
  10. Stabilizing the oscillations of a controlled mechanical system with $n$ degrees of freedom

    Avtomat. i Telemekh., 2020, no. 9,  93–104
  11. Oscillations of a coupled controlled system near equilibrium

    Avtomat. i Telemekh., 2019, no. 12,  47–58
  12. Stabilizing the oscillations of a controlled mechanical system

    Avtomat. i Telemekh., 2019, no. 11,  83–92
  13. Periodic model containing coupled subsystems with different types of oscillations

    Avtomat. i Telemekh., 2019, no. 3,  55–67
  14. Stabilization of oscillations in a periodic system by choosing appropriate couplings

    Avtomat. i Telemekh., 2018, no. 12,  34–43
  15. Stabilization of oscillations in a coupled periodic system

    Avtomat. i Telemekh., 2017, no. 11,  34–47
  16. Model containing coupled subsystems with oscillations of different types

    Avtomat. i Telemekh., 2017, no. 4,  21–36
  17. Construction of a stable cycle in weakly coupled identical systems

    Avtomat. i Telemekh., 2017, no. 2,  27–35
  18. Stabilizing the oscillations of an autonomous system

    Avtomat. i Telemekh., 2016, no. 6,  38–46
  19. Oscillation family in weakly coupled identical systems

    Avtomat. i Telemekh., 2016, no. 4,  14–23
  20. Oscillations, stability and stabilization in the model containing coupled subsystems with cycles

    Avtomat. i Telemekh., 2015, no. 7,  40–51
  21. Oscillations in the autonomous model containing coupled subsystems

    Avtomat. i Telemekh., 2015, no. 1,  81–90
  22. Basic oscillation mode in the coupled-subsystems model

    Avtomat. i Telemekh., 2014, no. 12,  28–41
  23. Quasi-Autonomous Systems: Oscillations, Stability, and Stabilization in the Regular Point of the Family of Periodic Solutions

    Avtomat. i Telemekh., 2013, no. 8,  32–46
  24. Stability and Oscillation Problems in Nonlinear Control Systems

    Avtomat. i Telemekh., 2013, no. 8,  3–4
  25. Model with coupled subsystems

    Avtomat. i Telemekh., 2013, no. 6,  26–41
  26. Oscillations and stability in quasiautonomous system. II. Critical point of the one-parameter family of periodic motions

    Avtomat. i Telemekh., 2011, no. 7,  107–115
  27. Forced resonant oscillations of nonlinear autonomous system in equilibrium neighborhood

    Avtomat. i Telemekh., 2010, no. 11,  112–118
  28. On models structurally stable in periodic motion

    Avtomat. i Telemekh., 2009, no. 9,  162–167
  29. Stabilization of oscillations from a monoparametric family of the autonomous system

    Avtomat. i Telemekh., 2009, no. 2,  35–41
  30. Oscillations and stability in quasiautonomous system. I. Simple point of the one-parameter family of periodic motions

    Avtomat. i Telemekh., 2006, no. 9,  90–98
  31. Stability and control in a system with the first integral

    Avtomat. i Telemekh., 2005, no. 3,  34–38
  32. Symmetric periodic orbits of the third kind in an $N$-planet problem. The resonance state and the parade of planets

    Dokl. Akad. Nauk, 350:1 (1996),  52–55

  33. XI International Conference “Stability and Oscillations in Nonlinear Control Systems” (Pyatnitskii Conference)

    Avtomat. i Telemekh., 2011, no. 9,  3
  34. X International Workshop “Stability and Oscillations of the Nonlinear Control Systems”

    Avtomat. i Telemekh., 2009, no. 9,  3
  35. IX International seminar “Stability and oscillations in the nonlinear control systems”

    Avtomat. i Telemekh., 2007, no. 8,  3
  36. Valentin Vital'evich Rumyantsev (A tribute in honor of his 80th birthday)

    Differ. Uravn., 37:12 (2001),  1587–1592


© Steklov Math. Inst. of RAS, 2026