RUS  ENG
Full version
PEOPLE

Shaikin Mikhail Ermolaevich

Publications in Math-Net.Ru

  1. Problems in the theory of $H^2/H_\infty$ controllers for linear stochastic multiplicative-type plants

    Avtomat. i Telemekh., 2025, no. 2,  47–70
  2. Resolvents of the Ito differential equations multiplicative with respect to the state vector

    Avtomat. i Telemekh., 2023, no. 8,  88–106
  3. Output dynamic controller analysis for stochastic systems of multiplicative type

    Avtomat. i Telemekh., 2022, no. 3,  54–68
  4. Multiplicative stochastic systems with multiple external disturbances

    Avtomat. i Telemekh., 2018, no. 2,  122–134
  5. Design of optimal state controller robust to external disturbance for one class of nonstationary stochastic systems

    Avtomat. i Telemekh., 2015, no. 7,  127–139
  6. Stochastic $H_2/H_\infty$-control for a dynamical system with internal noises multiplicative with respect to state, control, and external disturbance

    Avtomat. i Telemekh., 2013, no. 3,  136–155
  7. To the problem of stealth moving of the object in a threat environment on the periphery of its contact with a sonar station

    Probl. Upr., 2013, no. 5,  66–78
  8. Applying random stream theory to the group target detection problem

    Avtomat. i Telemekh., 2012, no. 6,  52–72
  9. Representation of the bilinear system output by multiple stochastic integrals

    Avtomat. i Telemekh., 2010, no. 6,  79–95
  10. Integral representations of solutions for linear stochastic equations with multiplicative perturbances

    Avtomat. i Telemekh., 2010, no. 4,  16–33
  11. Stochastic problems in $H_\infty$ and $H_2/H_\infty$ control

    Avtomat. i Telemekh., 2009, no. 2,  3–34
  12. Orthogonal expansions of the nonlinear functionals of the Gaussian process and their application to statistical analysis

    Avtomat. i Telemekh., 2007, no. 3,  83–93
  13. The multilinear algebra of the moments of distributions in the analysis of nonlinear stochastic systems

    Avtomat. i Telemekh., 2006, no. 2,  106–118
  14. Identification of commutative covariance structures by successive testing of statistical hypotheses

    Avtomat. i Telemekh., 2005, no. 3,  48–64
  15. Optimal estimation equations for the state vector of a stochastic bilinear system: its bilinear approximation

    Avtomat. i Telemekh., 2004, no. 12,  94–109
  16. Statistical Estimation and Classification on Commutative Covariance Structures

    Avtomat. i Telemekh., 2003, no. 8,  69–81
  17. A Coordinate-Free Approach to the Method of Moments in the Theory of Multidimensional Stochastic Systems

    Avtomat. i Telemekh., 2002, no. 5,  81–91
  18. An Algebraic Formalism for Computing the Moments of Distributions of Quadratic Forms

    Avtomat. i Telemekh., 2002, no. 3,  76–84
  19. Decomposition of Nonlinear Stochastic Differential Systems

    Avtomat. i Telemekh., 2001, no. 3,  72–85
  20. Optimal finite-dimensional filtering of the state vector for bilinear systems with nilpotent Lie algebras

    Avtomat. i Telemekh., 2000, no. 2,  62–75
  21. Some issues in the use of algebraic methods for analysis of stochastic systems

    Avtomat. i Telemekh., 1998, no. 11,  184–194
  22. Decomposition of nonlinear stochastic systems and control systems that are linear with respect to input

    Avtomat. i Telemekh., 1998, no. 5,  112–123
  23. Algebraic Structure of PBIB-maps in Analysis of Variance with Applications to Multi-Factor Experiments with Interaction

    Avtomat. i Telemekh., 1997, no. 11,  90–101
  24. Analysis of Covariance Structures for a Class of Combinatorial Observation Systems

    Avtomat. i Telemekh., 1997, no. 2,  108–118
  25. Decomposition of Covariant Structures Associated with Finite Geometries

    Avtomat. i Telemekh., 1996, no. 1,  83–91
  26. Determination of the number of parameters of a model in the problem of the identification of invariant covariance structures

    Avtomat. i Telemekh., 1994, no. 10,  104–116
  27. Confidence estimation of parameters of normal statistical models

    Avtomat. i Telemekh., 1986, no. 4,  81–90
  28. Optimal parameter estimates in regression models with a special co variance structure and their application to two-factor experiments

    Avtomat. i Telemekh., 1981, no. 6,  44–56
  29. Algebraical methods for studying correlatios in incomplete balanced block diagrams of experiment design. III. Sufficient statistical data and estimates of co variance matrices

    Avtomat. i Telemekh., 1976, no. 9,  62–68
  30. Algebraical methods for study of correlational connections in incomplete balanced block design. II. Relationship algebras and characterization of covariance matrices in the case of symmetrical blocks

    Avtomat. i Telemekh., 1976, no. 7,  57–67
  31. Algebraical method for study of correlations in balanced incomplete block design. I. Characterization of covariance matrices in the case of nonsymmetrical block design

    Avtomat. i Telemekh., 1976, no. 5,  64–73
  32. Sufficient statistic and estimates of covariance special structure matrices in two models of experimental design

    Avtomat. i Telemekh., 1976, no. 4,  25–34
  33. Symmetry properties and characterization of covariance matrices in an experimental design problem with random blocks

    Avtomat. i Telemekh., 1976, no. 3,  73–82

  34. Review of the monograph “Control of linear systems subjected to exogenous disturbances: the linear matrix inequality technique” by B. T. Polyak, M. V. Khlebnikov, P. S. Shcherbakov

    Avtomat. i Telemekh., 2015, no. 3,  151–157


© Steklov Math. Inst. of RAS, 2026