RUS  ENG
Full version
PEOPLE

Blizorukova Marina Sergeevna

Publications in Math-Net.Ru

  1. On dynamic reconstruction of a disturbances in distributed parameter systems

    Russian Universities Reports. Mathematics, 30:150 (2025),  97–109
  2. On modeling a solution of systems with constant delay using controlled models

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  39–49
  3. On the reconstruction of an unknown input of a system of differential equations

    Trudy Inst. Mat. i Mekh. UrO RAN, 27:2 (2021),  59–66
  4. Dynamic discrepancy method in the problem of reconstructing the input of a system with time delay control

    Zh. Vychisl. Mat. Mat. Fiz., 61:3 (2021),  382–390
  5. Reconstruction of the right-hand part of a distributed differential equation using a positional controlled model

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  533–552
  6. The dynamical discrepancy method in problems of reconstructing unknown characteristics of a second-order system

    Izv. IMI UdGU, 53 (2019),  48–60
  7. On a problem of dynamic reconstruction of an unknown disturbance in a linear system

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 7,  18–22
  8. On the stable tracking problem for a solution of a differential equation in a Hilbert space

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  63–70
  9. On a control problem for a linear system with delay in the control

    Trudy Inst. Mat. i Mekh. UrO RAN, 22:2 (2016),  55–62
  10. Infinite-horizon stable control of a parabolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 55:9 (2015),  1503–1510
  11. On reconstruction of an input for parabolic equation on infinite time interval

    Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 8,  30–41
  12. On a control problem of a nonlinear second-order system

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  25–31
  13. On a reconstruction algorithm for the trajectory and control in a delay system

    Trudy Inst. Mat. i Mekh. UrO RAN, 18:1 (2012),  109–122
  14. On the reconstruction of the trajectory and control in a nonlinear second-order system

    Trudy Inst. Mat. i Mekh. UrO RAN, 17:1 (2011),  17–26
  15. An algorithm for dynamic reconstruction of input disturbances from observations of some of the coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  1007–1017
  16. On dynamic reconstruction of input in the second-order linear systems

    Avtomat. i Telemekh., 2010, no. 5,  99–109
  17. Об одном алгоритме решения задачи оптимального управления в гильбертовом пространстве

    Matem. Mod. Kraev. Zadachi, 2 (2010),  29–32
  18. On a modification of the dynamical discrepancy method

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  21–22
  19. A control problem under incomplete information

    Avtomat. i Telemekh., 2006, no. 3,  131–142
  20. Dynamic Input Reconstruction for a Nonlinear Time-Delay System

    Avtomat. i Telemekh., 2002, no. 2,  3–13


© Steklov Math. Inst. of RAS, 2026