RUS  ENG
Full version
PEOPLE

Matviychuk Aleksandr Rostislavovich

Publications in Math-Net.Ru

  1. Some problems of target approach for nonlinear control system at a fixed time moment

    Izv. IMI UdGU, 62 (2023),  125–155
  2. A grid-based algorithm for constructing attainability sets with improved boundary approximation

    Chelyab. Fiz.-Mat. Zh., 6:1 (2021),  9–21
  3. On Estimating the Degree of Nonconvexity of Reachable Sets of Control Systems

    Trudy Mat. Inst. Steklova, 315 (2021),  261–270
  4. To solution of control problems of nonlinear systems on a finite time interval

    Izv. IMI UdGU, 2015, no. 2(46),  202–215
  5. A parallel algorithm for constructing approximate attainable sets of nonlinear control systems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015),  459–472
  6. A method for constructing a resolving control in an approach problem based on attraction to the solvability set

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  275–284
  7. The invariance of sets in the construction of solutions to a problem of approach at a fixed time

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  264–283
  8. On the solutions construction of the problem of convergence to a fixed point in time

    Bulletin of Irkutsk State University. Series Mathematics, 5:4 (2012),  95–115
  9. Problems of dynamics of systems with phase constraints

    Izv. IMI UdGU, 2012, no. 1(39),  138–139
  10. On approximate construction of controlled system reachable sets on finite time interval

    Izv. IMI UdGU, 2012, no. 1(39),  94
  11. Differential games with fixed terminal time and estimation of the instability degree of sets in these games

    Trudy Mat. Inst. Steklova, 277 (2012),  275–287
  12. Approximations of attainability sets and of integral funnels of differential inclusions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 4,  23–39
  13. Defect of stability in game-pursuit problem

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 3,  87–103
  14. The solution of an optimal control problem with a moving target in the presence of obstacles

    Izv. IMI UdGU, 2006, no. 3(37),  99–100
  15. Один алгоритм построения множества управляемости при наличии фазовых ограничений

    Vestnik Chelyabinsk. Gos. Univ., 2003, no. 8,  153–166


© Steklov Math. Inst. of RAS, 2026