RUS  ENG
Full version
PEOPLE

Teshaev Muhsin Khudoyberdiyevich

Publications in Math-Net.Ru

  1. On the modeling of vibrations of deformable elements of apparatus structures under vibration disturbing loads

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 5,  68–76
  2. Natural small oscillations of a flat viscoelastic spiral spring

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 4,  53–59
  3. Natural vibrations of a viscoelastic three-layer cylindrical body

    Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 3,  54–70
  4. Free linear vibrations of a viscoelastic spherical shell with filler

    Izvestiya VUZ. Applied Nonlinear Dynamics, 33:4 (2025),  485–496
  5. Oscillations of a rigid strip on a viscoelastic half-plane under the vertical load

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 95,  152–163
  6. Control of resonant oscillations of viscoelastic systems

    Theor. Appl. Mech., 51:1 (2024),  1–12
  7. Nonlinear flutter of the transient process of hereditarily deformable systems in supersonic flight mode

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 88,  124–137
  8. Diffraction of harmonic shear waves on an elliptical cavity located in a viscoelastic medium

    Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 8,  64–70
  9. Dynamic damping of vibrations of a solid body mounted on viscoelastic supports

    Izvestiya VUZ. Applied Nonlinear Dynamics, 31:1 (2023),  63–74
  10. Unsteady motions of spherical shells in a viscoelastic medium

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 83,  166–179
  11. Realization of servo-constraints in electromechanical servosystems

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 12,  44–51
  12. On the problem of stabilizing the movements of mechanical systems constrained by geometric and kinematic servo connections

    University proceedings. Volga region. Physical and mathematical sciences, 2009, no. 4,  27–38


© Steklov Math. Inst. of RAS, 2026