RUS  ENG
Full version
PEOPLE

Potapov Igor' Ivanovich

Publications in Math-Net.Ru

  1. Erosion model of overflow dam right bank on the Pemzenskaya bayou

    Proceedings of ISP RAS, 37:6(3) (2025),  203–216
  2. On the erosion of the bottom caused by a suspended turbulent jet

    Proceedings of ISP RAS, 37:2 (2025),  181–194
  3. Mathematical modeling of a turbulent fluid flow by using the quasihydrodynamic equations and k-omega turbulence model

    Proceedings of ISP RAS, 37:2 (2025),  163–180
  4. On the formulation of boundary conditions when solving hydrodynamic problems in vorticity-stream function variables

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 18:3 (2025),  27–38
  5. Model of steady river flow in the cross section of a curved channel

    Computer Research and Modeling, 16:5 (2024),  1163–1178
  6. On modeling the grain settling through viscous incompressible fluid problem using smoothed particle hydrodynamics method

    Proceedings of ISP RAS, 36:4 (2024),  191–202
  7. On the river flow motion in the bend channel cross-section

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:4 (2024),  577–593
  8. Modeling of channel processes in a channel cross section

    Proceedings of ISP RAS, 35:4 (2023),  187–196
  9. Bank slope evolution in trapezoidal channel riverbed

    Computer Research and Modeling, 14:3 (2022),  581–592
  10. Evolution of bed forms produced by clarified turbulent flow over a non-cohesive bed

    Prikl. Mekh. Tekh. Fiz., 63:1 (2022),  80–88
  11. Solving the shallow water problem by central differences and FCT correction

    Proceedings of ISP RAS, 34:5 (2022),  243–250
  12. The two geometric parameters influence study on the hydrostatic problem solution accuracy by the SPH method

    Computer Research and Modeling, 13:5 (2021),  979–992
  13. Investigation of the process of growth of the amplitude of bed waves in rivers and channels

    Computer Research and Modeling, 12:6 (2020),  1339–1347
  14. Solving of the Exner equation for morphologically complex bed

    Computer Research and Modeling, 11:3 (2019),  449–461
  15. Solution of fluid dynamics problems in truncated computational domains

    Zh. Vychisl. Mat. Mat. Fiz., 59:3 (2019),  516–525
  16. Movement of sediment over periodic bed

    Computer Research and Modeling, 10:1 (2018),  47–60
  17. Effect of the particle size of bottom sediments on the wavelength of bottom perturbation in pressure conduits

    Prikl. Mekh. Tekh. Fiz., 57:3 (2016),  60–64
  18. Computation of forces acting on bodies in plane and axisymmetric cavitation flow problems

    Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016),  318–331
  19. Bottom stability in closed conduits

    Computer Research and Modeling, 7:5 (2015),  1061–1068
  20. Modeling of sand-gravel bed evolution in one-dimension

    Computer Research and Modeling, 7:2 (2015),  315–328
  21. Causes of bed instability

    Prikl. Mekh. Tekh. Fiz., 55:6 (2014),  114–119
  22. Sediment transport under normal and tangential bottom stresses with the bottom slope taken into account

    Prikl. Mekh. Tekh. Fiz., 55:5 (2014),  100–105
  23. The evolution of a cross-channel trench under the influence of the transit hydrodynamic flow

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 2,  146–152
  24. Effect of turbulent viscosity on the formation and motion of bottom waves

    Prikl. Mekh. Tekh. Fiz., 54:1 (2013),  57–68
  25. Stochastic model of development of bed forms

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 2,  85–91
  26. Generation mechanism of bed wave in a sand-bed channel

    Prikl. Mekh. Tekh. Fiz., 52:2 (2011),  81–91
  27. Determination of the coastal rate of erosion for the rivers with sandy bottom

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2011, no. 4,  116–120
  28. Formulation and solution of the problem of the stability of a cohesionless channel bottom

    Prikl. Mekh. Tekh. Fiz., 51:1 (2010),  62–74
  29. Two-dimensional sediment transport models for sand-bed rivers

    Prikl. Mekh. Tekh. Fiz., 50:3 (2009),  131–139
  30. The comparative analysis streamline finite-element schemes of the high order for a problem of the Navier-Stokes on the basis of modified SUPG-method

    Dal'nevost. Mat. Zh., 4:1 (2003),  5–17
  31. High order upwind finite element schemes for the heat transfer

    Zh. Vychisl. Mat. Mat. Fiz., 43:9 (2003),  1409–1413
  32. Comparative analysis of the second order accurate finite element approximation for the Stokes problem

    Zh. Vychisl. Mat. Mat. Fiz., 42:11 (2002),  1756–1760


© Steklov Math. Inst. of RAS, 2026