RUS  ENG
Full version
PEOPLE

Zhukov Viktor Pavlovich

Publications in Math-Net.Ru

  1. Sufficient roughness conditions of non-autonomous nonlinear dynamic system in the sense of stability type conservation

    Probl. Upr., 2009, no. 4,  9–14
  2. On the sufficient and necessary conditions for robustness of the nonlinear dynamic systems in terms of stability retention

    Avtomat. i Telemekh., 2008, no. 1,  30–38
  3. On the roughness of nonlinear dynamic systems

    Probl. Upr., 2008, no. 5,  8–13
  4. On roughness conditions for unstable nonautonomous linear systems in terms of stability type preservation

    Probl. Upr., 2008, no. 3,  44–48
  5. On the conditions defining stability nature for some classes of nonlinear dynamic system

    Probl. Upr., 2007, no. 2,  8–10
  6. Reduction of stability study of nonlinear dynamic systems by the second Lyapunov method

    Avtomat. i Telemekh., 2005, no. 12,  51–64
  7. On the conditions for invariance of the sets belonging to the phase portraits of nonlinear dynamic systems

    Avtomat. i Telemekh., 2005, no. 6,  19–29
  8. On sufficient and necessary conditions of asymptotic stability of nonlinear dynamic systems

    Probl. Upr., 2005, no. 3,  2–9
  9. On Conditions for Stability of the Nonlinear Dynamic Systems in the Limit-Critical Case

    Avtomat. i Telemekh., 2003, no. 11,  47–59
  10. Conditions for Instability of One Class of Nonlinear Nonautomomous Dynamic Systems

    Avtomat. i Telemekh., 2003, no. 10,  34–41
  11. Instability Conditions for Nonlinear Nonautonomous Dynamic Systems. II. Sufficient Conditions of Instability

    Avtomat. i Telemekh., 2003, no. 2,  50–65
  12. Instability Conditions for Nonlinear Nonautonomous Dynamic Systems. I

    Avtomat. i Telemekh., 2002, no. 11,  32–38
  13. On Existence of Simple Invariant Contours in Invariant Sets of Nonlinear Dynamic Systems of the Second Order

    Avtomat. i Telemekh., 2002, no. 3,  36–49
  14. The Radial Drift Method for Qualitative Study of the Properties of Nonlinear Dynamic Systems. III. On the Existence of Invariant Closed Loops

    Avtomat. i Telemekh., 2001, no. 8,  21–40
  15. Method of Radial Drift for Qualitative Study of the Properties of the Nonlinear Dynamic Systems. II. Study of Asymptotic System Stability

    Avtomat. i Telemekh., 2001, no. 2,  25–42
  16. The radial drift method for the qualitative investigation of the properties of nonlinear dynamical systems. I

    Avtomat. i Telemekh., 2000, no. 11,  69–84
  17. Divergence conditions of nonexistence of autooscillations in nonlinear second-order dynamic systems

    Avtomat. i Telemekh., 2000, no. 1,  21–29
  18. Analogues of the Bendixson and Dulac criteria for dynamical systems of arbitrary order

    Avtomat. i Telemekh., 1999, no. 10,  46–64
  19. Divergence conditions for the asymptotic stability of second-order nonlinear dynamical systems

    Avtomat. i Telemekh., 1999, no. 7,  34–43
  20. On the drift method for studying the dynamic properties of nonlinear systems

    Avtomat. i Telemekh., 1998, no. 10,  3–17
  21. On the problem of investigating the asymptotic stability of nonautonomous nonlinear dynamical systems without requiring uniformity

    Avtomat. i Telemekh., 1998, no. 4,  25–40
  22. On a Divergent Condition of Instability of Nonlinear Dynamic Systems

    Avtomat. i Telemekh., 1997, no. 12,  73–79
  23. Analysis of Non-Uniform Asymptotic Stability of Nonlinear Dynamic Systems via Symmetry of their Properties

    Avtomat. i Telemekh., 1997, no. 3,  31–46
  24. On the Problem of the Investigation of the Nonuniformly Asymptotically Stabile Nonlinear Dynamic Systems

    Avtomat. i Telemekh., 1996, no. 6,  40–48
  25. Nonuniform asymptotic stability of dynamical systems

    Dokl. Akad. Nauk, 347:1 (1996),  34–35
  26. On necessary and sufficient conditions of asymptotically stable nonautonomous nonlinear dynamic systems

    Avtomat. i Telemekh., 1995, no. 9,  29–48
  27. Sufficient and necessary conditions for the asymptotic stability of nonlinear dynamical systems

    Avtomat. i Telemekh., 1994, no. 3,  24–36
  28. On the inversion of divergent conditions for the instability of nonlinear dynamical systems

    Avtomat. i Telemekh., 1992, no. 12,  36–40
  29. A method for the investigation of periodic regimes in nonlinear dynamical systems

    Avtomat. i Telemekh., 1992, no. 7,  3–9
  30. Necessary and sufficient conditions for instability of nonlinear autonomous dynamic systems

    Avtomat. i Telemekh., 1990, no. 12,  59–65
  31. On field methods of studying nonlinear dynamic systems. II

    Avtomat. i Telemekh., 1988, no. 2,  56–69
  32. On field methods of studying nonlinear dynamic systems

    Avtomat. i Telemekh., 1987, no. 6,  7–18
  33. The source method for nonautonomous systems

    Avtomat. i Telemekh., 1985, no. 7,  79–92
  34. Study of nonsmooth dynamic systems

    Avtomat. i Telemekh., 1984, no. 1,  58–64
  35. Some properties of solutions of a class of systems of nonlinear differential equations

    Differ. Uravn., 20:2 (1984),  349–351
  36. Periodic regimes in nonlinear systems

    Dokl. Akad. Nauk SSSR, 256:2 (1981),  302–305
  37. On the method of sources for studying the stability of nonlinear systems

    Avtomat. i Telemekh., 1979, no. 3,  12–17
  38. Stability analysis of a class of nonlinear systems by the method of sources

    Dokl. Akad. Nauk SSSR, 248:4 (1979),  814–818
  39. On one method for qualitative study of nonlinear system stability

    Avtomat. i Telemekh., 1978, no. 6,  11–15
  40. The source method in stability analysis of nonlinear systems

    Dokl. Akad. Nauk SSSR, 243:2 (1978),  291–294
  41. A method of stability analysis of nonlinear systems

    Dokl. Akad. Nauk SSSR, 243:1 (1978),  52–53


© Steklov Math. Inst. of RAS, 2026