RUS  ENG
Full version
PEOPLE

Andreichenko Dmitry Konstantinovich

Publications in Math-Net.Ru

  1. Statics and dynamics of an electrically driven mesh nanoplate

    Izv. Saratov Univ. Math. Mech. Inform., 25:3 (2025),  366–379
  2. Refined model of a floating gyrostabilized platform

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2025, no. 1(63),  40–51
  3. On nonlinear oscillations of flexible axisymmetric spherical shells located in a noise field

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 4(62),  107–114
  4. On the stability of a cylindrical hydrodynamic suspension

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 4(62),  76–88
  5. Advanced algorithm for stability analysis of combined dynamical systems

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021),  7–16
  6. Hybrid automation extended model

    Izv. Saratov Univ. Math. Mech. Inform., 19:1 (2019),  94–104
  7. Learning neural network controllers for stabilizing hybrid dynamic systems

    Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018),  354–360
  8. Adaptive algorithm of parametric synthesis of hybrid dynamical systems

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  465–475
  9. Analyticity conditions of characteristic and disturbing quasipolynomials of hybrid dynamical systems

    Izv. Saratov Univ. Math. Mech. Inform., 16:2 (2016),  208–217
  10. Parallelization of parametric synthesis by «problems portfolio» scheme based on MPI technology

    Izv. Saratov Univ. Math. Mech. Inform., 15:2 (2015),  222–228
  11. Parallel algorithm of optimal parameters calculation for the single channel angular stabilization system

    Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013),  109–117
  12. On stability theory of autonomous angular stabilization system for combined dynamical systems

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(2) (2013),  9–14
  13. Using parallel computing technologies for modeling of metallic photonic crystals

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013),  86–90
  14. The Choice of Optimal Parameters for Combined Dynamical Systems

    Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013),  7–11
  15. About realisation of finite-element modeling in problems of an osteosynthesis on cluster systems of SSU

    Izv. Saratov Univ. Math. Mech. Inform., 10:3 (2010),  77–85
  16. An efficient algorithm for numerical inversion of the Laplace transform

    Zh. Vychisl. Mat. Mat. Fiz., 40:7 (2000),  1030–1044


© Steklov Math. Inst. of RAS, 2026