RUS  ENG
Full version
PEOPLE

Krainov Alexei Yurievich

Publications in Math-Net.Ru

  1. Modeling of gas exchange processes in the porous space between the surface of metal-ceramic boards and the refractory tooling under high-temperature sintering conditions

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 97,  83–99
  2. The methodology and numerical calculations for the non-stationary burning rate of a high-energy material according to the well-known law of pressure variation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 95,  124–136
  3. Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. II. Numerical modeling results

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 94,  175–187
  4. A numerical study of the heat-ventilation state of a portal tambour of a tunnel in winter

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025, no. 93,  140–159
  5. Simulation of flame propagation in a coal-methane-air mixture in a cylindrical channel taken into account of gas viscosity

    Chelyab. Fiz.-Mat. Zh., 9:2 (2024),  268–276
  6. Numerical modeling of the influence of nanopurge of aluminum on burning of high-energy material in a closed volume

    Chelyab. Fiz.-Mat. Zh., 9:2 (2024),  261–267
  7. Experimental investigation and modeling of metallized composite solid propellant combustion with allowance for the size distribution of agglomerates. I. Experiment: methodology, processing, results

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92,  125–143
  8. Modeling of intra-ballistic processes in solid rocket motors for charges with non-removable forming rig

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 92,  89–100
  9. Experimental study of pressure and temperature variations in a supersonic air flow through a flat channel

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 91,  75–84
  10. A study of the gas dynamics of combustion of a mixed solid propellant with pressure fluctuations

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 90,  130–139
  11. Experimental and theoretical study of combustion of a coal dust particle – air mixture in a closed spherical volume

    Fizika Goreniya i Vzryva, 59:4 (2023),  93–101
  12. Two-scale mathematical model of the coal–methane–air particle–gas suspension combustion

    Fizika Goreniya i Vzryva, 59:1 (2023),  32–42
  13. Regularities of propane-air mixture flame propagation in a cylindrical channel

    Sib. Zh. Ind. Mat., 26:1 (2023),  108–117
  14. Peculiarities of the flame formation of a propane-air mixture in a narrow channel

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 82,  141–149
  15. Combustion of a mixed solid fuel with the additive of boron powder

    Fizika Goreniya i Vzryva, 58:5 (2022),  106–114
  16. Investigation of combustion of a coal-methane-air suspension in a long closed channel

    Fizika Goreniya i Vzryva, 58:5 (2022),  54–63
  17. Study of critical conditions of spark ignition and burning rate of boron powder particles in a propane-air mixture

    Fizika Goreniya i Vzryva, 58:3 (2022),  54–63
  18. Numerical simulation of combustion of a mixed solid fuel containing boron powder

    Fizika Goreniya i Vzryva, 58:2 (2022),  78–87
  19. Simulation of the coal mine ventilation with account for gob areas

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 79,  78–88
  20. Numerical simulation of combustion of the composite solid propellant containing bidispersed boron powder

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 72,  131–139
  21. Combustion of a gas suspension of coal dust in a swirling flow

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 71,  139–147
  22. Mathematical modeling on ignition of metallized solid propellant by a convective high temperature flow

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68,  126–140
  23. On the numerical solution to the problem of air shock wave propagation in mine workings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 64,  108–120
  24. Critical conditions of spark ignition of a bidisperse aluminum powder in air

    Fizika Goreniya i Vzryva, 55:4 (2019),  26–33
  25. Calculation of the ignition stages and steady-state combustion of a metallized solid propellant under laser radiation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59,  94–104
  26. The influence of the coal dust composition on the propagation speed of the combustion front of the coal dust with an inhomogeneous particle distribution in the air

    Computer Research and Modeling, 10:2 (2018),  221–230
  27. Numerical simulation of spark ignition of air-borne powder dust

    Fizika Goreniya i Vzryva, 54:2 (2018),  61–70
  28. A numerical determining of the critical conditions for spark ignition and yielding of a stable combustion of a lean methane-air mixture

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 56,  79–87
  29. Flame propagation velocity in an aerosuspension of nanoscale aluminum powder

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53,  95–106
  30. Mathematical model and calculation of the unsteady combustion rate of the metallized solid rocket propellants

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 50,  99–111
  31. Stability of the combustion of polydisperse coal-methane-air mixture in the heat recovery burner

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 48,  82–90
  32. Numerical investigation of the air heat-mass transfer in the chamber of dry storage for spent nuclear fuel

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 47,  75–86
  33. Estimation of the effect of non-condensable gases on the process of hydrogen fluoride desublimation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46,  70–75
  34. Combustion of the solid propellant with addition of aluminum powder under an acceleration load

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 45,  95–103
  35. Numerical simulation of combustion of a polydisperse suspension of coal dust in a spherical volume

    Computer Research and Modeling, 8:3 (2016),  531–539
  36. Numerical simulation of air cooling the tank to desublimate components of the gas mixture

    Computer Research and Modeling, 8:3 (2016),  521–529
  37. Mathematical modeling of combustion of a frozen suspension of nanosized aluminum

    Fizika Goreniya i Vzryva, 52:2 (2016),  60–66
  38. Combustion of lean methane–air mixtures in a slot burner with adiabatic outer walls

    Fizika Goreniya i Vzryva, 52:1 (2016),  52–59
  39. Combustion of the coal-methane-air mixture in the heat recovery burner

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 3(41),  65–73
  40. Numerical simulation of the extinction of N powder by a pressure drop based on a coupled combustion model

    Fizika Goreniya i Vzryva, 51:6 (2015),  47–52
  41. On the influence of the fuel concentration in a hybrid gas-suspension on the speed of the combustion front propagation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 4(36),  55–63
  42. The influence of gas flow rate on the methane-air mixture burning in a flat burner with an inert body

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2015, no. 1(33),  63–71
  43. Method for direct numerical simulation of turbulent gas flows in curvilinear coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  886–894
  44. Physico-mathematical modeling of fluoride hydrogen desublimation from gas mixtures onto walls of a condenser

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 5(31),  76–82
  45. Combustion modes of the lean methane-air mixture in a U-shaped burner

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2014, no. 2(28),  69–76
  46. A method of direct numerical simulation of turbulent flows of viscous heat-conducting gas in curved channels

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 5(25),  59–69
  47. Studying the influence of relative motion of suspended inert particles on the rate of the gas mixture combustion front

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2013, no. 2(22),  60–66
  48. Mathematical modeling of drying of coal particles in the gas stream

    Computer Research and Modeling, 4:2 (2012),  357–367
  49. Numerical simulation of gasless combustion taking into account the heterogeneity of the structure and the temperature dependence of diffusion

    Fizika Goreniya i Vzryva, 48:5 (2012),  142–147
  50. The mathematical model and results of numerical calculations of sedimentation tank cooling upon desublimation of the flow of $\mathrm{UF}_6$ and light impurities

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 4(20),  56–65
  51. Numerical simulation of cooling tanks for vapor desublimation processes

    Computer Research and Modeling, 3:4 (2011),  383–388
  52. Mathematical simulation of non-stationary ventilation processes of coal mining

    Computer Research and Modeling, 3:2 (2011),  155–163
  53. Mathematical modeling of SHS process in heterogeneous reactive powder mixtures

    Computer Research and Modeling, 3:2 (2011),  147–153
  54. On the problem of laminar flame propagation in a gas with an inert dust

    Fizika Goreniya i Vzryva, 47:4 (2011),  70–75
  55. Research of the possibility to increase the degree of $\mathrm{UF}_6$ purification at intermediate stages of processing

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 4(12),  78–82
  56. Mathematical model and results of numerical calculations for $\mathrm{UF}_6$ overflowing in presence of microquantities of light impurities

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2010, no. 2(10),  53–59
  57. Effect of release of combustible volatile components from the disperse phase on self-ignition of a gas–particle mixture

    Fizika Goreniya i Vzryva, 38:5 (2002),  11–21
  58. Effect of thermal expansion on the minimum energy of gas spark ignition

    Fizika Goreniya i Vzryva, 38:4 (2002),  9–13
  59. Critical conditions of spark ignition of a mixture of gases (oxidizer and fuel) and reactive particles

    Fizika Goreniya i Vzryva, 38:3 (2002),  30–36
  60. Effect of radiant heat transfer on the minimum spark–ignition energy of gas suspensions

    Fizika Goreniya i Vzryva, 37:3 (2001),  16–24
  61. Modeling of flame propagation in a mixture of combustible gases and particles

    Fizika Goreniya i Vzryva, 36:2 (2000),  3–9
  62. Induction period of a two-component aerosol of liquid oxidizer and propellant

    Fizika Goreniya i Vzryva, 35:6 (1999),  15–21
  63. Self-ignition of a two-component gas suspension

    Fizika Goreniya i Vzryva, 35:5 (1999),  6–13
  64. On the limits of flame propagation in a dusty gas

    Fizika Goreniya i Vzryva, 33:4 (1997),  14–20
  65. Inhibition of gas flame by a dropping-liquid aerosol

    Fizika Goreniya i Vzryva, 32:4 (1996),  55–61
  66. Ignition of a heterogeneous cloud of particles by a radiant flux

    Fizika Goreniya i Vzryva, 32:4 (1996),  19–24
  67. Ignition of a gas suspension in a cavity with heated radiating walls

    Fizika Goreniya i Vzryva, 26:5 (1990),  20–24
  68. Inhibition of gas flames by powder compositions

    Fizika Goreniya i Vzryva, 25:2 (1989),  57–62
  69. Influence of thermophysical characteristics of an inert obstacle and heat losses on combustion wave propagation

    Fizika Goreniya i Vzryva, 23:6 (1987),  16–19
  70. Ignition regimes of a gas suspension in a vessel with heated walls

    Fizika Goreniya i Vzryva, 20:5 (1984),  58–61


© Steklov Math. Inst. of RAS, 2026