|
|
Publications in Math-Net.Ru
-
The Riemann matrix for some systems of the differential hyperbolic-type equations of the high order
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024), 799–808
-
On the nonlocal problem for a hyperbolic equation with a parabolic degeneration
Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6, 60–66
-
The Riemann method for equations with a dominant partial derivative (A Review)
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021), 207–240
-
The Goursat-type problem for a hyperbolic equation and system of third order hyperbolic equations
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019), 186–194
-
The solution of Cauchy problem for the hyperbolic differential equations of the fourth order by the Riman method
Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:3 (2019), 33–38
-
The Cauchy problem for the hyperbolic differential equation of the third order
Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:3 (2018), 30–34
-
Characteristic problem for the one system of hyperbolic differential equations of the third order
Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:1 (2018), 20–24
-
The Cauchy problem for a system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 752–759
-
The Cauchy problem for a general hyperbolic differential equation of the $n$-th order
with the nonmultiple characteristics
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016), 241–248
-
Cauchy Problem For the System Of the General Hyperbolic Differential Equations
Of the Forth Order With Nonmultiple Characteristics
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014), 7–15
-
The Characteristic Problem for one Hyperbolic Differentional Equation of the Third Order with Nonmultiple Characteristics
Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 3–6
-
The characteristic problem for the system of the general hyperbolic differential equations
of the third order with nonmultiple characteristics
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013), 31–36
-
One characteristic problem for the general hyperbolic differential equation of the third order with nonmultiple characteristics
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(28) (2012), 180–183
-
The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012), 247–250
-
The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(24) (2011), 35–41
-
Преобразования базиса трёхмерной неразрешимой алгебры Ли, допускаемой дифференциальным уравнением третьего порядка
Matem. Mod. Kraev. Zadachi, 3 (2009), 246–248
-
The reduction of the second and third order differential equations which admit Lie algebra
Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009, no. 6(72), 69–73
© , 2026