RUS  ENG
Full version
PEOPLE

Yakovleva Juliya Olegovna

Publications in Math-Net.Ru

  1. The Riemann matrix for some systems of the differential hyperbolic-type equations of the high order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024),  799–808
  2. On the nonlocal problem for a hyperbolic equation with a parabolic degeneration

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6,  60–66
  3. The Riemann method for equations with a dominant partial derivative (A Review)

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021),  207–240
  4. The Goursat-type problem for a hyperbolic equation and system of third order hyperbolic equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:1 (2019),  186–194
  5. The solution of Cauchy problem for the hyperbolic differential equations of the fourth order by the Riman method

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:3 (2019),  33–38
  6. The Cauchy problem for the hyperbolic differential equation of the third order

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:3 (2018),  30–34
  7. Characteristic problem for the one system of hyperbolic differential equations of the third order

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:1 (2018),  20–24
  8. The Cauchy problem for a system of the hyperbolic differential equations of the $n$-th order with the nonmultiple characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017),  752–759
  9. The Cauchy problem for a general hyperbolic differential equation of the $n$-th order with the nonmultiple characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:2 (2016),  241–248
  10. Cauchy Problem For the System Of the General Hyperbolic Differential Equations Of the Forth Order With Nonmultiple Characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014),  7–15
  11. The Characteristic Problem for one Hyperbolic Differentional Equation of the Third Order with Nonmultiple Characteristics

    Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013),  3–6
  12. The characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  31–36
  13. One characteristic problem for the general hyperbolic differential equation of the third order with nonmultiple characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(28) (2012),  180–183
  14. The analogue of D'Alembert formula for hyperbolic differential equation of the third order with nonmultiple characteristics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012),  247–250
  15. The Goursat problem for one hyperbolic system of the third order differential equations with two independent variables

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(24) (2011),  35–41
  16. Преобразования базиса трёхмерной неразрешимой алгебры Ли, допускаемой дифференциальным уравнением третьего порядка

    Matem. Mod. Kraev. Zadachi, 3 (2009),  246–248
  17. The reduction of the second and third order differential equations which admit Lie algebra

    Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2009, no. 6(72),  69–73


© Steklov Math. Inst. of RAS, 2026