|
|
Publications in Math-Net.Ru
-
Удельное электрическое сопротивление нанопорошка карбида кремния
TVT, 63:6 (2025), 770–773
-
Контактное сопротивление, нормальная монохроматическая излучательная способность и удельное электрическое сопротивление карбида кремния при температурах $800$–$1400$ К
TVT, 63:5 (2025), 596–603
-
О корректности использования закона Ома и закона Фурье для описания контактного электрического сопротивления
TVT, 63:1 (2025), 52–56
-
Влияние температуры и силы тока на контактное электрическое сопротивление графита
TVT, 62:3 (2024), 363–367
-
Temperature distribution in the area of the electrical contact surface of graphite
TVT, 62:1 (2024), 143–146
-
Application of the regular mode method to the experimental determination of thermal conductivity of fluid
TVT, 61:4 (2023), 525–529
-
Thermal effect in the contact resistance of graphite
TVT, 60:6 (2022), 946–949
-
Contact electrical resistance of grade MPG-$7$ graphite at DC and AC current
TVT, 60:5 (2022), 789–792
-
Electrical contact resistance of graphite
TVT, 60:4 (2022), 519–523
-
Determination of specific heat in experiments with pulsed electric heating
TVT, 59:5 (2021), 790–793
-
Relationship between force and heat flux in the electric-pulse heating of a metal conductor
TVT, 58:5 (2020), 826–828
-
Influence of heating temperature on the electrical resistivity of pyrolytic graphite
TVT, 58:4 (2020), 732–734
-
Electrical resistivity of the $c$ surface of pyrolytic UPV-1 graphite in a temperature range of $2200$–$3200$ K
TVT, 58:1 (2020), 141–143
-
Emittance properties of siliconized silicon carbide in the temperature range of $1400$–$2200$ K
TVT, 57:2 (2019), 301–303
-
Thermal conductivity of silicicated silicon carbide at $1400$–$2200$ K
TVT, 57:1 (2019), 137–139
-
Thermal expansion of zirconium carbide at $1200$–$2850$ K
TVT, 56:6 (2018), 956–958
-
Electrical resistivity of silicated silicon carbide
TVT, 56:5 (2018), 841–843
-
Relative elongation of silicicated silicon carbide at temperatures of $1150$–$2500$ K
TVT, 56:2 (2018), 310–312
-
Relative lengthening of $\rm ZrO_2$ in the temperature range of $1200$–$2700$ K
TVT, 55:6 (2017), 782–784
-
The role of heat flux in the nonsteady thermal problem of molybdenum sphere cooling in an electrostatic levitation experiment
TVT, 55:6 (2017), 696–699
-
Self-heating effect at graphite ohmic heating
TVT, 55:5 (2017), 732–736
-
Investigation of stability of the relative elongation of GIP-4 graphite under cyclic thermal loads
TVT, 54:1 (2016), 144–146
-
Absorption and width of the optical gap of $\alpha$-$\text{C}$ films obtained by magnetron sputtering
TVT, 53:2 (2015), 312–314
-
Investigation of stability of specific elongation of graphite of $\text{DE}$-$24$ grade under cyclic heat loads
TVT, 53:1 (2015), 54–57
-
Formation of a diamond-like carbon film by magnetron sputtering of a graphite target under radiation flux from a black-body model
Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:7 (2014), 35–41
-
Formation of a thin film containing $\alpha$-carbine in the magnetron sputtering of graphite targets and the impact of an external photoactivation source
TVT, 51:5 (2013), 787–790
-
About a phonon mechanism of heat conduction in graphite at high temperatures
TVT, 51:3 (2013), 477–480
-
Preparation of diamond-like films in the process of magnetron sputtering of graphite target
TVT, 47:1 (2009), 141–143
-
Condition of formation of 2D Coulomb crystal on the surface of dielectric
TVT, 46:5 (2008), 786–788
-
Thermograms of melting of thin plates heated by laser radiation with modulated intensity
TVT, 44:5 (2006), 673–681
-
The Determination of Thermal Conductivity and Emissivity of Graphite at High Temperatures
TVT, 43:5 (2005), 791–793
-
Once more about the experimental investigation of the thermal properties of carbon
UFN, 173:12 (2003), 1380–1381
-
Experimental investigation of the thermal properties of carbon at high temperatures and moderate pressures
UFN, 172:8 (2002), 931–944
-
Transport of thermionic current in a dielectric channel in crossed electric fields
TVT, 39:5 (2001), 835–838
-
Possibility of increasing the degree of perfection of a blackbody model
TVT, 39:2 (2001), 347–349
-
Experimental determination of the emissivity of isotropic graphite at temperatures above $2300$ K
TVT, 39:1 (2001), 163–165
-
Thermionic current transport in a dielectric channel
TVT, 38:5 (2000), 706–709
-
The use of photoactivation to suppress the dissociation and achieve the melting of aluminum nitride under the effect of electric arc
TVT, 37:1 (1999), 71–77
-
Determination of the melting temperature for high-temperature materials by the thermogram method under laser heating
TVT, 36:6 (1998), 921–926
-
Melting parameters of carbon
TVT, 36:5 (1998), 740–745
-
The phase diargram of carbon in the neighborhood of the solid–liquid–vapor triple point
TVT, 35:5 (1997), 716–721
-
Melting of refractory nonmetallic materials by electric arc
TVT, 35:1 (1997), 147–149
-
High-temperature blackbody model
TVT, 35:1 (1997), 122–128
-
Deposition of thin films during thermal vaporization of aluminum nitride in a vacuum
TVT, 33:1 (1995), 163–166
-
Synthesis of binary compounds on a solid surface by photoactivation of the adatoms of components as demonstrated with $\mathrm{AlN}$
TVT, 33:1 (1995), 33–39
-
Remelting of the surface layer of $\mathrm{AlN}$ ceramics under laser radiation effect
TVT, 32:5 (1994), 742–748
-
Experimental investigation of the melting parameters of silicon nitride
TVT, 32:1 (1994), 26–30
-
Determination of the fusion parameters of aluminum nitride
TVT, 30:4 (1992), 731–737
-
Optical properties of thin films of aluminum nitride
TVT, 30:2 (1992), 290–293
-
Determination of the melting parameters of boron nitride
TVT, 29:6 (1991), 1112–1120
-
Electrophysical properties of thin films made by reactive evaporation of aluminum nitride
TVT, 29:5 (1991), 899–902
-
Synthesis of thin-films of aluminum nitride
TVT, 27:6 (1989), 1185–1189
-
A testbed for laser material processing
TVT, 22:6 (1984), 1200–1205
-
Thermal conductivity of vanadium
TVT, 15:6 (1977), 1202–1207
-
Investigation of the integral normal radiating power of materials in the high-temperature region using a reverberatory furnace
TVT, 14:4 (1976), 729–734
-
Integral normal emissivity of vanadium in temperature-range $1300$–$2000$ degrees K
TVT, 14:1 (1976), 223–224
© , 2026