RUS  ENG
Full version
PEOPLE

Ochkin Vladimir Nikolaevich

Publications in Math-Net.Ru

  1. Механизмы нарушения объемного баланса молекул воды и кислорода в отпаянном тлеющем разряде постоянного тока

    TVT, 63:6 (2025),  665–673
  2. Spectroscopy of small gas components of a nonequilibrium low-temperature plasma

    UFN, 192:10 (2022),  1145–1178
  3. Measurements of water molecule isotopomer concentrations in a discharge of inert gas with addition of H2O and D2 vapours by the method of external-cavity diode laser spectroscopy

    Kvantovaya Elektronika, 49:2 (2019),  157–161
  4. The detection of low concentrations of water molecules in plasma by methods of actinometry and simulation

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 43:19 (2017),  71–77
  5. The influence of dust particles on the intensities of plasma emission lines

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 42:14 (2016),  59–65
  6. Optimisation of external cavity parameters of a weak absorption laser spectrometer

    Kvantovaya Elektronika, 46:3 (2016),  255–258
  7. External-cavity diode laser spectrometer for measuring the concentration ratio 13CO2/12CO2 by absorption in the range of 1.6 μm

    Kvantovaya Elektronika, 45:7 (2015),  680–684
  8. Comparison of the cathodo- and $\gamma$-luminescence spectra of scintillation crystals

    Pisma v Zhurnal Tekhnicheskoi Fiziki, 40:10 (2014),  73–79
  9. Recording of absorption spectra by a three-beam integral technique with a tunable laser and external cavity

    Kvantovaya Elektronika, 44:4 (2014),  353–361
  10. Measurement of the concentration ratio for 13С and 12С isotopes at atmospheric pressure by carbon dioxide absorption of diode laser radiation at ~2 μm

    Kvantovaya Elektronika, 39:4 (2009),  388–391
  11. Frequency modulation upon nonstationary heating of the p–n junction in high-sensitive diode laser spectroscopy

    Kvantovaya Elektronika, 37:4 (2007),  399–404
  12. Non-self-sustained slab discharge as an efficient method for exciting an active laser medium

    Kvantovaya Elektronika, 33:5 (2003),  419–424
  13. Coherent light scattering stimulated by a quasi-static electric field

    UFN, 173:11 (2003),  1253–1257
  14. Xe laser pumped by fast electrons generated in a barrier discharge

    Kvantovaya Elektronika, 32:8 (2002),  675–679
  15. Influence of temperature on the collision broadening of IR spectral lines of CO2 molecules

    Kvantovaya Elektronika, 32:7 (2002),  647–653
  16. A slab Xe laser excited by a non-self-sustained discharge

    Kvantovaya Elektronika, 30:5 (2000),  399–400
  17. Measurement of electric fields in a plasma with the aid of the coherent four-wave mixing polarisation technique

    Kvantovaya Elektronika, 26:1 (1999),  73–76
  18. Mechanism of the operation of an rf-pumped cw Xe laser

    Kvantovaya Elektronika, 25:6 (1998),  512–516
  19. Determination of the intensities of electric fields in gases and plasmas by the CARS method

    Kvantovaya Elektronika, 22:3 (1995),  295–299
  20. Waveguide CO2 laser with a power per unit length of about 1 W/cm

    Kvantovaya Elektronika, 19:10 (1992),  945–946
  21. Waveguide CO2 laser with a selector utilizing a lens and tunable in a frequency band exceeding the resonator intermode spacing

    Kvantovaya Elektronika, 16:10 (1989),  2092–2100
  22. Frequency selectivity of a multimode waveguide gas laser with a diffraction grating

    Kvantovaya Elektronika, 15:5 (1988),  933–942
  23. Frequency selectivity and resonator losses in a waveguide laser with a diffraction grating

    Kvantovaya Elektronika, 13:7 (1986),  1342–1351
  24. Use of combined resonators in widening the continuous tuning band of the emission frequency of gas lasers

    Kvantovaya Elektronika, 13:5 (1986),  932–936
  25. Optogalvanic effect in plasmas and gases

    UFN, 148:3 (1986),  473–507
  26. Selective properties of laser resonators with diffraction grating operated in the autocollimation regime

    Kvantovaya Elektronika, 11:11 (1984),  2272–2282
  27. Stabilized tuning of the emission frequency of a laser by a two-section interferometer

    Kvantovaya Elektronika, 10:6 (1983),  1137–1145
  28. Carbon dioxide laser with sequential transitions and a composite resonator

    Kvantovaya Elektronika, 9:11 (1982),  2155–2159
  29. Carbon monoxide laser with selective and nonselective resonators

    Kvantovaya Elektronika, 9:6 (1982),  1203–1208
  30. Investigation of frequency-selective losses of a reflecting grating in a laser resonator

    Kvantovaya Elektronika, 8:10 (1981),  2097–2106
  31. Intensity modulation, frequency stabilization, and tuning of a CO laser by an extracavity Stark cell

    Kvantovaya Elektronika, 8:4 (1981),  882–888
  32. Emission spectrum of a CO2 laser with an intracavity diffraction selector

    Kvantovaya Elektronika, 8:3 (1981),  576–583
  33. Selection of $CO_2$ laser lines by a reflecting diffraction interferometer

    Kvantovaya Elektronika, 7:6 (1980),  1242–1251
  34. Mass spectra of positive ions of $\mathrm{CO}$- and $\mathrm{N}_2\mathrm{O}$-laser discharge plasma

    Dokl. Akad. Nauk SSSR, 232:5 (1977),  1052–1054
  35. Influence of the combustion of carbon on the excitation of vibrational levels in the discharge plasma of a CO laser

    Kvantovaya Elektronika, 3:10 (1976),  2156–2160
  36. Relaxation of active levels in CO laser due to CO*-CN collisions

    Kvantovaya Elektronika, 3:1 (1976),  72–80
  37. Spectral and energy characteristics of a sealed carbon monoxide laser

    Kvantovaya Elektronika, 1:8 (1974),  1851–1853
  38. Concentration of CN radicals in carbon monoxide laser plasma

    Kvantovaya Elektronika, 1:3 (1974),  573–578
  39. Carbon monoxide laser operating at room temperature

    Kvantovaya Elektronika, 1973, no. 6(18),  58–63
  40. Population of the lower active level in a carbon dioxide laser

    Kvantovaya Elektronika, 1973, no. 1(13),  41–46
  41. Vibrational temperatures in carbon dioxide lasers

    Kvantovaya Elektronika, 1971, no. 3,  96–99

  42. Investigation of the distribution of CO$_2$ molecules between vibrational–rotational levels in a glow discharge by the method of pulsed diode laser spectroscopy

    Kvantovaya Elektronika, 14:4 (1987),  851–859


© Steklov Math. Inst. of RAS, 2026