RUS  ENG
Full version
PEOPLE

Lipatov Artem Vladimirovich

Publications in Math-Net.Ru

  1. Refined TMD gluon density in a proton from the HERA and LHC data

    Pis'ma v Zh. Èksper. Teoret. Fiz., 119:11 (2024),  798–799
  2. Double parton scattering versus jet quenching

    Pis'ma v Zh. Èksper. Teoret. Fiz., 119:11 (2024),  796–797
  3. Shadowing and antishadowing in the rescaling model

    Pis'ma v Zh. Èksper. Teoret. Fiz., 119:10 (2024),  729–730
  4. Linearly polarized gluon density in the rescaling model

    Pis'ma v Zh. Èksper. Teoret. Fiz., 118:10 (2023),  723–724
  5. On $x$-independence of $R^Q = F_L^Q/F_2^Q$ ratio at low $x$

    Pis'ma v Zh. Èksper. Teoret. Fiz., 117:6 (2023),  399
  6. Beauty production in two-photon interactions at LEP2: $k_T$-factorization versus data

    Pis'ma v Zh. Èksper. Teoret. Fiz., 87:1 (2008),  10–14
  7. Graphic methods of investigation of the stability of continuous systems with one nonlinearity of different classes

    Avtomat. i Telemekh., 1985, no. 3,  28–35
  8. Stability of a discrete stationary system with one nonlinear block

    Avtomat. i Telemekh., 1984, no. 9,  74–83
  9. Graphical criteria of stability for continuous systems with one differentiable nonlinearity

    Avtomat. i Telemekh., 1984, no. 3,  57–65
  10. Stability of a stationary system with one nonlinear block. II

    Avtomat. i Telemekh., 1982, no. 7,  34–41
  11. Stability of a stationary system having one nonlinear block. I

    Avtomat. i Telemekh., 1982, no. 6,  43–53
  12. Stability of continuous systems with a single nonlinearity

    Dokl. Akad. Nauk SSSR, 260:4 (1981),  812–817
  13. A method tî develop criteria for absolute stability of systems of non-stationary nonlinear blocks having memory

    Avtomat. i Telemekh., 1979, no. 5,  38–48
  14. On some sufficient conditions for stability and instability of linear continuous stationary systems

    Avtomat. i Telemekh., 1978, no. 9,  30–37


© Steklov Math. Inst. of RAS, 2026