RUS  ENG
Full version
PEOPLE

Mednykh Il'ya Aleksandrovich

Publications in Math-Net.Ru

  1. Companion matrix for superposition of polynomials and its application to knot theory

    Dokl. RAN. Math. Inf. Proc. Upr., 521 (2025),  72–80
  2. The structure of the characteristic polynomial of Laplace matrix for circulant graphs with non-fixed jumps

    Mat. Tr., 28:1 (2025),  94–112
  3. On the structure of Laplacian characteristic polynomial of circulant graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024),  34–39
  4. The Kirchhoff indices for circulant graphs

    Sibirsk. Mat. Zh., 65:6 (2024),  1191–1206
  5. Cyclic coverings of graphs. Counting rooted spanning forests and trees, Kirchhoff index, and Jacobians

    Uspekhi Mat. Nauk, 78:3(471) (2023),  115–164
  6. On Jacobian group and complexity of the $Y$-graph

    Sib. Èlektron. Mat. Izv., 19:2 (2022),  662–673
  7. Plans' periodicity theorem for Jacobian of circulant graphs

    Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021),  51–54
  8. On the Jacobian group of a cone over a circulant graph

    Mathematical notes of NEFU, 28:2 (2021),  88–101
  9. Kirchhoff index for circulant graphs and its asymptotics

    Dokl. RAN. Math. Inf. Proc. Upr., 494 (2020),  43–47
  10. On the structure of the critical group of a circulant graph with non-constant jumps

    Uspekhi Mat. Nauk, 75:1(451) (2020),  197–198
  11. Counting rooted spanning forests in cobordism of two circulant graphs

    Sib. Èlektron. Mat. Izv., 17 (2020),  814–823
  12. Counting spanning trees in cobordism of two circulant graphs

    Sib. Èlektron. Mat. Izv., 15 (2018),  1145–1157
  13. On the Oikawa and Arakawa theorems for graphs

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:4 (2017),  243–252
  14. The equivalence classes of holomorphic mappings of genus 3 Riemann surfaces onto genus 2 Riemann surfaces

    Sibirsk. Mat. Zh., 57:6 (2016),  1346–1360
  15. Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2

    Mat. Zametki, 96:1 (2014),  70–82
  16. On the sharp upper bound for the number of holomorphic mappings of Riemann surfaces of low genus

    Sibirsk. Mat. Zh., 53:2 (2012),  325–344
  17. On the structure of picard group for moebius ladder

    Sib. Èlektron. Mat. Izv., 8 (2011),  54–61
  18. Classification up to equivalence of the holomorphic mappings of Riemann surfaces of low genus

    Sibirsk. Mat. Zh., 51:6 (2010),  1379–1395
  19. On holomorphic maps between Riemann surfaces of genera three and two

    Dokl. Akad. Nauk, 424:2 (2009),  165–167
  20. On Irregular Holomorphic Mappings between Riemann Surfaces of Genera Four and Two

    Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:2 (2009),  72–79

  21. Viktor Vasil’evich Chueshev is 70

    Sib. Èlektron. Mat. Izv., 14 (2017),  69–79
  22. Vladislav Vasil'evich Aseev is 70

    Sib. Èlektron. Mat. Izv., 14 (2017),  43–57


© Steklov Math. Inst. of RAS, 2026