RUS  ENG
Full version
PEOPLE

Ramodanov Sergey Mikhailovich

Publications in Math-Net.Ru

  1. Differential-linear distinguishing attacks on block ciphers

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  81–90
  2. Dynamics of a Circular Cylinder and Two Point Vortices in a Perfect Fluid

    Regul. Chaotic Dyn., 26:6 (2021),  675–691
  3. Falling Motion of a Circular Cylinder Interacting Dynamically with a Point Vortex

    Regul. Chaotic Dyn., 18:1-2 (2013),  184–193
  4. Self-propulsion of a body with rigid surface and variable coefficient of lift in a perfect fluid

    Nelin. Dinam., 8:4 (2012),  799–813
  5. Falling motion of a circular cylinder interacting dynamically with a point vortex

    Nelin. Dinam., 8:3 (2012),  617–628
  6. Self-propulsion of a Body with Rigid Surface and Variable Coefficient of Lift in a Perfect Fluid

    Regul. Chaotic Dyn., 17:6 (2012),  547–558
  7. Motion of a body with variable distribution of mass in a boundless viscous liquid

    Nelin. Dinam., 7:3 (2011),  635–647
  8. Dynamic advection

    Nelin. Dinam., 6:3 (2010),  521–530
  9. Coupled motion of a rigid body and point vortices on a sphere

    Nelin. Dinam., 5:3 (2009),  319–343
  10. E. Zermelo Habilitationsschrift on vortex hydrodynamics on a sphere

    Nelin. Dinam., 4:4 (2008),  497–513
  11. Algebraic reduction of systems on two- and three-dimensional spheres

    Nelin. Dinam., 4:4 (2008),  407–416
  12. Motion of two spheres in ideal fluid. I. Equations of motions in the Euclidean space. First integrals and reduction

    Nelin. Dinam., 3:4 (2007),  411–422
  13. On the motion of two mass vortices in perfect fluid

    Nelin. Dinam., 2:4 (2006),  435–443
  14. Interaction of two circular cylinders in a perfect fluid

    Nelin. Dinam., 1:1 (2005),  3–21
  15. Motion of a circular cylinder and $n$ point vortices in a perfect fluid

    Regul. Chaotic Dyn., 8:4 (2003),  449–462
  16. Motion of two circular cylinders in a perfect fluid

    Regul. Chaotic Dyn., 8:3 (2003),  313–318
  17. On the motion of a body with a rigid hull and changing geometry of masses in an ideal fluid

    Dokl. Akad. Nauk, 382:4 (2002),  478–481
  18. Motion of a Circular Cylinder and $N$ Point Vortices in a Perfect Fluid

    Regul. Chaotic Dyn., 7:3 (2002),  291–298
  19. Motion of a Circular Cylinder and a Vortex in an Ideal Fluid

    Regul. Chaotic Dyn., 6:1 (2001),  33–38
  20. Asymptotic behavior of Chaplygin equation solutions

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1995, no. 3,  93–97
  21. On the problem on motion of a rigid body in a liquid under the action of a tracking force

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 1,  64–72

  22. Институт криптографии, связи и информатики Академии ФСБ России

    Kvant, 2022, no. 10,  45–51
  23. Институт криптографии, связи и информатики Академии ФСБ России

    Kvant, 2021, no. 11-12,  42–45
  24. Институт криптографии, связи и информатики Академии ФСБ России

    Kvant, 2020, no. 10,  41–45
  25. Институт криптографии, связи и информатики Академии ФСБ России

    Kvant, 2019, no. 12,  36–42
  26. Институт криптографии, связи и информатики Академии ФСБ России

    Kvant, 2018, no. 12,  42–50
  27. Институт криптографии, связи и информатики Академии ФСБ России

    Kvant, 2017, no. 12,  23–29
  28. Coupled motion of a rigid body and point vortices on a two-dimensional spherical surface

    Regul. Chaotic Dyn., 15:4-5 (2010),  440–461


© Steklov Math. Inst. of RAS, 2026