RUS  ENG
Full version
PEOPLE

Khishchenko Konstantin Vladimirovich

Publications in Math-Net.Ru

  1. Контактное сопротивление, нормальная монохроматическая излучательная способность и удельное электрическое сопротивление карбида кремния при температурах $800$$1400$ К

    TVT, 63:5 (2025),  596–603
  2. О термодинамике вольфрама в области жидкой фазы при высоких давлениях и температурах

    TVT, 63:4 (2025),  481–487
  3. Уравнение состояния сплава гафния и циркония при высоких давлениях и температурах в ударных волнах

    TVT, 62:4 (2024),  513–517
  4. Equation of state for titanium at high pressures

    TVT, 62:2 (2024),  182–186
  5. Calculation of plasma heating by charged products of thermonuclear reactions based on the simplified Fokker–Planck equation

    Zh. Vychisl. Mat. Mat. Fiz., 64:5 (2024),  881–892
  6. Equation of state of zirconium at high pressures

    TVT, 61:5 (2023),  783–786
  7. Studying the dynamics of wave processes of compression and expansion in palladium under picosecond laser action

    TVT, 61:4 (2023),  542–548
  8. Equation of state for aluminum at high pressures

    TVT, 61:3 (2023),  477–480
  9. Numerical study of instability of medium interface during thermonuclear combustion of a cylindrical shelled microtarget

    Zh. Vychisl. Mat. Mat. Fiz., 63:4 (2023),  678–693
  10. Melting of titanium by a shock wave generated by an intense femtosecond laser pulse

    Pis'ma v Zh. Èksper. Teoret. Fiz., 115:9 (2022),  576–584
  11. Reflection of detonation wave from the symmetry plane within a cylindrical target for controlled thermonuclear fusion

    Zh. Vychisl. Mat. Mat. Fiz., 61:10 (2021),  1715–1733
  12. Extraction of the shock adiabat of metals from the decay characteristics of a shock wave in a laser experiment

    Pis'ma v Zh. Èksper. Teoret. Fiz., 109:8 (2019),  525–529
  13. Thermal radiation from water behind the reflected shock wave

    Fizika Goreniya i Vzryva, 54:6 (2018),  95–103
  14. On a heat exchange problem under sharply changing external conditions

    Zh. Vychisl. Mat. Mat. Fiz., 58:2 (2018),  304–310
  15. Compression pulse attenuation in polymethylmethacrylate

    Chelyab. Fiz.-Mat. Zh., 2:4 (2017),  456–469
  16. Numerous experiment on impact compression of the mixture of graphite with water

    Fizika Goreniya i Vzryva, 53:4 (2017),  114–121
  17. Dynamic deformation of PMMA: the influence of viscoelastic properties

    Chelyab. Fiz.-Mat. Zh., 1:3 (2016),  92–107
  18. Track method for the calculation of plasma heating by charged thermonuclear reaction products for axisymmetric flows

    Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016),  442–454
  19. Strength of synthetic diamonds under tensile stresses produced by picosecond laser action

    Prikl. Mekh. Tekh. Fiz., 56:1 (2015),  171–179
  20. On some features of plane waves of thermonuclear burn

    Prikl. Mekh. Tekh. Fiz., 56:1 (2015),  104–115
  21. Negative pressure and spallation in graphite targets under nano- and picosecond laser irradiation

    Kvantovaya Elektronika, 45:5 (2015),  421–425
  22. Generation of negative pressures and spallation phenomena in diamond exposed to a picosecond laser pulse

    Kvantovaya Elektronika, 44:6 (2014),  530–534
  23. Measurement of the brightness temperature of shock-compressed epoxy resin

    Fizika Goreniya i Vzryva, 49:1 (2013),  138–142
  24. Specific features of the behaviour of targets under negative pressures created by a picosecond laser pulse

    Kvantovaya Elektronika, 43:3 (2013),  246–251
  25. Phase transformations of carbon under extreme energy action

    Zhurnal Tekhnicheskoi Fiziki, 82:2 (2012),  41–45
  26. Strata formation at fast electrical explosion of cylindrical conductors

    TVT, 50:5 (2012),  625–637
  27. Simulation of multi-material hydrodynamic flows using adaptive mesh refinement

    Num. Meth. Prog., 13:3 (2012),  424–433
  28. On the role of heat conduction in the formation of a high-temperature plasma during counter collision of rarefaction waves of solid deuterium

    Prikl. Mekh. Tekh. Fiz., 52:4 (2011),  3–20
  29. Submicrosecond polymorphic transformations accompanying shock compression of graphite

    TVT, 48:6 (2010),  845–853
  30. On the mechanism of pressure increase with increasing porosity of the media compressed in conical and cylindrical targets

    Zh. Vychisl. Mat. Mat. Fiz., 50:12 (2010),  2195–2207
  31. On the neutral stability of a shock wave in real media

    Pis'ma v Zh. Èksper. Teoret. Fiz., 90:1 (2009),  21–27
  32. One method of producing a high-temperature dense plasma

    Prikl. Mekh. Tekh. Fiz., 50:3 (2009),  15–24
  33. The use of models of mixture for analysis of shock-wave experiments with incomplete phase transformation

    TVT, 47:2 (2009),  254–261
  34. Determination of the transport and optical properties of a nonideal solid-density plasma produced by femtosecond laser pulses

    Pis'ma v Zh. Èksper. Teoret. Fiz., 85:6 (2007),  328–333
  35. Calculation of shock compression of porous media in conical solid-state targets with an outlet hole

    Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006),  913–931
  36. The simulation of transformation of graphite to diamond under conditions of dynamic compression in a conic target

    TVT, 41:4 (2003),  515–526
  37. Metastable states of liquid metal under conditions of electric explosion

    TVT, 39:5 (2001),  728–742
  38. Some results of investigation of the kinetics of thermal decomposition and evaporation of highly superheated materials

    TVT, 36:2 (1998),  227–230
  39. Temperature and heat capacity of polymethyl methacrylate behind the front of strong shock waves

    TVT, 35:6 (1997),  1002–1005

  40. XXXVI Международная конференция “Взаимодействие интенсивных потоков энергии с веществом”

    TVT, 59:6 (2021),  969–970
  41. XXXV Международная конференция “Уравнения состояния вещества”

    TVT, 58:5 (2020),  829–830
  42. XXXIV международная конференция “Взаимодействие интенсивных потоков энергии с веществом”

    TVT, 58:3 (2020),  473–474
  43. Объединенное заседание коллаборации “Наука высокой плотности энергии на установке для антипротонных и ионных исследований” и Десятого международного семинара “Физика плазмы с интенсивными лазерными и тяжелоионными пучками”

    TVT, 57:3 (2019),  480
  44. XXXIII Международная конференция “Уравнения состояния вещества”

    TVT, 57:3 (2019),  478–479
  45. $\rm XXXII$ Международная конференция “Взаимодействие интенсивных потоков энергии с веществом”

    TVT, 56:1 (2018),  152–153
  46. Объединенное заседание коллаборации “Физика плазмы на установке для антипротонных и ионных исследований” и Восьмого Международного семинара “Физика плазмы с интенсивными лазерными и тяжелоионными пучками”

    TVT, 55:5 (2017),  861–862
  47. XXXI международная конференция “Уравнения состояния вещества”

    TVT, 54:4 (2016),  648
  48. XXX Международная конференция “Взаимодействие интенсивных потоков энергии с веществом”

    TVT, 54:2 (2016),  320
  49. Седьмой семинар “Физика плазмы с интенсивными тяжелоионными и лазерными пучками на установке для антипротонных и ионных исследований”

    TVT, 53:4 (2015),  640
  50. XXIX Международная конференция “Уравнения состояния вещества”

    TVT, 52:4 (2014),  643–644
  51. XXVIII Международная конференция «Взаимодействие интенсивных потоков энергии с веществом»

    TVT, 52:1 (2014),  154–155
  52. Рецензия на книгу О. Ф. Шленского “Горение и взрыв материалов” (М.: Машиностроение, 2012)

    TVT, 51:4 (2013),  639–640
  53. Пятый семинар “Физика плазмы с интенсивными лазерными и тяжелоионными пучками для FAIR”

    TVT, 51:4 (2013),  638
  54. XXVII Международная конференция “Уравнения состояния вещества”

    TVT, 50:5 (2012),  736
  55. XXVI International Conference on the Interaction of Intense Energy Fluxes with Matter

    TVT, 49:5 (2011),  799–800
  56. XXIV International Conference on Interaction of Intense Energy Fluxes with Matter

    TVT, 47:5 (2009),  799–800


© Steklov Math. Inst. of RAS, 2026