RUS  ENG
Full version
PEOPLE

Chechel' Inna Ivanovna

Publications in Math-Net.Ru

  1. On the structure of steady axisymmetric Navier-Stokes flows with a stream function having multiple local extrema in its definite-sign domains

    Zh. Vychisl. Mat. Mat. Fiz., 53:11 (2013),  1869–1893
  2. Numerical study of spherical Couette flows for certain zenith-angle-dependent rotations of boundary spheres at low Reynolds numbers

    Zh. Vychisl. Mat. Mat. Fiz., 52:6 (2012),  1095–1133
  3. On the development of iterative methods with boundary condition splitting for solving boundary and initial-boundary value problems for the linearized and nonlinear Navier–Stokes equations

    Zh. Vychisl. Mat. Mat. Fiz., 51:1 (2011),  74–95
  4. Numerical study of the basic stationary spherical couette flows at low Reynolds numbers

    Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  693–716
  5. On the convergence rate and optimization of a numerical method with splitting of boundary conditions for the stokes system in a spherical layer in the axisymmetric case: Modification for thick layers

    Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006),  858–886
  6. Second-order accurate method with splitting of boundary conditions for solving the stationary axially symmetric Navier–Stokes problem in spherical gaps

    Zh. Vychisl. Mat. Mat. Fiz., 45:12 (2005),  2232–2250
  7. Second-order accurate (up to the axis of symmetry) finite-element implementations of iterative methods with splitting of boundary conditions for Stokes and stokes-type systems in a spherical layer

    Zh. Vychisl. Mat. Mat. Fiz., 45:5 (2005),  846–889
  8. Increasing the rate of convergence of bilinear finite-element realizations of iterative methods by splitting boundary conditions for Stokes-type systems for large values of a singular parameter

    Zh. Vychisl. Mat. Mat. Fiz., 44:11 (2004),  2049–2068
  9. Exact estimates of the convergence rate of iterative methods with splitting of the boundary conditions for the Stokes-type system in a layer with a periodicity condition

    Zh. Vychisl. Mat. Mat. Fiz., 40:12 (2000),  1823–1837
  10. Bilinear finite element implementations of iterative methods with incomplete splitting of boundary conditions for a Stokes-type system on a rectangle

    Zh. Vychisl. Mat. Mat. Fiz., 39:11 (1999),  1828–1854
  11. On some methods for enhancing the convergence speed for the higher harmonics of bilinear finite element implementations of iterative methods with boundary-condition splitting for a Stokes-type system

    Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  956–970
  12. Real properties of bilinear finite element implementations of methods with the splitting of boundary conditions for a Stokes-type system

    Zh. Vychisl. Mat. Mat. Fiz., 38:2 (1998),  247–261
  13. Algorithms based on bilinear finite elements for iterative methods with split boundary conditions for a Stokes-type system in a strip under the periodicity condition

    Zh. Vychisl. Mat. Mat. Fiz., 37:7 (1997),  799–815
  14. A rapidly convergent iterative domain-decomposition method for boundary-value problems for a second-order elliptic equation with a parameter

    Zh. Vychisl. Mat. Mat. Fiz., 36:10 (1996),  26–45
  15. The multigrid method applied to a finite-element scheme for a two-dimensional Stokes-type system

    Zh. Vychisl. Mat. Mat. Fiz., 30:12 (1990),  1797–1803
  16. A variational-difference method for solving boundary-value problems in the theory of shells using Vekua's moment theory

    Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988),  375–389
  17. Numerical modeling of long surface and internal waves in a closed slowly rotating basin

    Zh. Vychisl. Mat. Mat. Fiz., 24:7 (1984),  1066–1078
  18. Solution of boundary value problems of the theory of generalized analytic functions by the variational-difference method

    Zh. Vychisl. Mat. Mat. Fiz., 24:1 (1984),  19–36
  19. Boundary value problems for the St. Venant system of equations on a plane

    Zh. Vychisl. Mat. Mat. Fiz., 19:3 (1979),  708–725
  20. A numerical method for solving St. Venant's equations (chamber model)

    Zh. Vychisl. Mat. Mat. Fiz., 16:5 (1976),  1217–1232
  21. The difference method of solving a boundary value problem for generalized analytic functions

    Zh. Vychisl. Mat. Mat. Fiz., 9:2 (1969),  271–285

  22. Correction

    Zh. Vychisl. Mat. Mat. Fiz., 45:9 (2005),  1728


© Steklov Math. Inst. of RAS, 2026