RUS  ENG
Full version
PEOPLE

Muchnik Ilya Borisovich

Publications in Math-Net.Ru

  1. Feature selection algorithm in classification learning using support vector machines

    Zh. Vychisl. Mat. Mat. Fiz., 48:7 (2008),  1318–1336
  2. Dynamic programming algorithms for analysis of non-stationary signals

    Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  70–86
  3. Estimation of the parameters of hidden Markov models of noise-like signals with spasmodically changing probability properties. II. Estimation of the structure parameters of a model

    Avtomat. i Telemekh., 1994, no. 10,  45–67
  4. Estimation of the parameters of hidden Markov models of noise-like signals with spasmodically changing probability properties. I. Structure of the model and estimation of its quantitative parameters

    Avtomat. i Telemekh., 1994, no. 9,  75–96
  5. Construction of decision rules in a pattern recognition problem using expect information

    Avtomat. i Telemekh., 1992, no. 8,  118–126
  6. Minimax approach to the construction of a generalized ordering

    Avtomat. i Telemekh., 1991, no. 11,  153–163
  7. Deterministic models and methods of pattern recognition on the times axis. III. Learning algorithm

    Avtomat. i Telemekh., 1991, no. 5,  154–162
  8. Deterministic models and methods of pattern recognition on the time axis. II. A pattern recognition algorithm

    Avtomat. i Telemekh., 1991, no. 4,  141–146
  9. Deterministic models and methods of pattern recognition on the time axis. I. Basic models and solvability of the recognition problem

    Avtomat. i Telemekh., 1991, no. 3,  120–132
  10. Maximization of generalized characteristic functions of monotone systems

    Avtomat. i Telemekh., 1990, no. 11,  124–135
  11. An optimal algorithm for maximization of submodular functions

    Avtomat. i Telemekh., 1990, no. 8,  139–147
  12. Accuracy estimate of a linear regression model

    Avtomat. i Telemekh., 1990, no. 2,  133–141
  13. Quasilinear monotone systems

    Avtomat. i Telemekh., 1989, no. 9,  123–134
  14. Kernels of monotone systems on a semi-lattice of sets

    Avtomat. i Telemekh., 1989, no. 8,  116–125
  15. Monotone systems for incomplete classifications of a finite set of objects

    Avtomat. i Telemekh., 1989, no. 4,  155–164
  16. Image segmentation: the state-of-art

    Avtomat. i Telemekh., 1987, no. 7,  3–56
  17. Submodular functions of sets and monotone systems in aggregation problems. II

    Avtomat. i Telemekh., 1987, no. 6,  138–147
  18. Sybmodular functions of sets and monotone systems in aggregation problems

    Avtomat. i Telemekh., 1987, no. 5,  135–148
  19. Algorithm to estimate the approximation accuracy of an empirical dependence

    Avtomat. i Telemekh., 1986, no. 8,  109–117
  20. Stratified Samples in the Problem of Type Representatives

    Avtomat. i Telemekh., 1986, no. 5,  108–117
  21. Linguistic analysis of Boolean matrices by means of monotone systems

    Avtomat. i Telemekh., 1986, no. 4,  132–139
  22. An algorithm for recognition of a flow of random events

    Avtomat. i Telemekh., 1986, no. 2,  142–146
  23. Local transformations of monotone systems. II. Algorithms for local transformations of monotone systems

    Avtomat. i Telemekh., 1986, no. 1,  116–125
  24. Local transformations of monotone systems. I. The problem of kernel correction in a monotone system

    Avtomat. i Telemekh., 1985, no. 12,  85–95
  25. Segmentation of structural curves based on the dynamic programming method

    Avtomat. i Telemekh., 1985, no. 1,  101–108
  26. Methods òî design an integral indicator

    Avtomat. i Telemekh., 1984, no. 10,  5–22
  27. Algorithmical implementation of a linguistic approach to the analysis of experimental curves

    Avtomat. i Telemekh., 1984, no. 4,  5–25
  28. Algorithms for structural analysis of the measurement path of computer system functioning parameters

    Avtomat. i Telemekh., 1984, no. 3,  161–167
  29. Simplification of the graph structure by using boolean matrices

    Avtomat. i Telemekh., 1983, no. 11,  90–99
  30. Optimal segmentation of experimental curves

    Avtomat. i Telemekh., 1983, no. 8,  84–95
  31. Structural methods of analyzing organisational systems

    Avtomat. i Telemekh., 1983, no. 5,  5–27
  32. Analysis of function distribution in an organization system

    Avtomat. i Telemekh., 1982, no. 10,  119–127
  33. Design of an approximating model of a path which characterizes the functioning of a computing system

    Avtomat. i Telemekh., 1982, no. 4,  160–169
  34. Computer-aided processing of grey scale images: state-of-art

    Avtomat. i Telemekh., 1981, no. 2,  84–126
  35. Approximating a data matrix as overlapping blocks

    Avtomat. i Telemekh., 1980, no. 8,  122–132
  36. Design of a factor tî approximate the connection matrix

    Avtomat. i Telemekh., 1980, no. 4,  89–96
  37. An approximating approach to solution of sets of structural regression equations

    Avtomat. i Telemekh., 1978, no. 11,  120–128
  38. Identification of industrial design activities for computerization

    Avtomat. i Telemekh., 1978, no. 5,  97–105
  39. Optimizing the location of data arrays on magnetic discs

    Avtomat. i Telemekh., 1977, no. 10,  149–158
  40. Analyzing the course of the hypertonic desease from empirical data

    Avtomat. i Telemekh., 1977, no. 9,  114–122
  41. An approximate algorithm for graph approximation by the method of second differences

    Avtomat. i Telemekh., 1977, no. 4,  114–120
  42. An algorithm for restructuring in the problem of graph approximation

    Avtomat. i Telemekh., 1976, no. 6,  125–133
  43. Image analysis for three-dimensional scenes through their texture properties

    Avtomat. i Telemekh., 1976, no. 1,  164–173
  44. On international scientific project implementation with special reference to cancer research

    Avtomat. i Telemekh., 1976, no. 1,  157–163
  45. Stratified sampling in the organization of empirical data collection

    Avtomat. i Telemekh., 1975, no. 10,  65–78
  46. Automatic classification of textural images

    Avtomat. i Telemekh., 1975, no. 2,  95–103


© Steklov Math. Inst. of RAS, 2026