RUS  ENG
Full version
PEOPLE

Kovalev Vladimir Aleksandrovich

Publications in Math-Net.Ru

  1. On a multiweight formulation of boundary conditions for surface growth theories

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 1(59),  5–20
  2. On the Neuber theory of micropolar elasticity. A pseudotensor formulation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020),  752–761
  3. On plane thermoelastic waves in hemitropic micropolar continua

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:3 (2019),  464–474
  4. On rationally complete algebraic systems of finite strain tensors of complex continua

    Izv. Saratov Univ. Math. Mech. Inform., 17:1 (2017),  71–84
  5. Micropolar thermoelastic continuum models with constrained microstructural parameters

    Izv. Saratov Univ. Math. Mech. Inform., 15:4 (2015),  451–461
  6. On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua

    Izv. Saratov Univ. Math. Mech. Inform., 15:1 (2015),  79–89
  7. On frame indifferent Lagrangians of micropolar thermoelastic continuum

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015),  325–340
  8. Hyperbolic theories and problems of continuum mechanics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:1 (2015),  186–202
  9. On a form of the first variation of the action integral over a varied domain

    Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014),  199–209
  10. A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua

    Izv. Saratov Univ. Math. Mech. Inform., 14:1 (2014),  77–87
  11. On Nonlinear Strain Vectors and Tensors in Continuum Theories of Mechanics

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014),  66–85
  12. Rotational invariance of non-linear Lagrangians of type-II micropolar thermoelastic continuum

    Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013),  96–102
  13. Covariant field equations and $d$-tensors of hyperbolic thermoelastic continuum with fine microstructure

    Izv. Saratov Univ. Math. Mech. Inform., 13:2(1) (2013),  60–68
  14. Coupled thermodynamic orhogonality in non-linear models of type-III thermoelasticity

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(30) (2013),  207–214
  15. On precisely conserved quantities of coupled micropolar thermoelastic field

    Izv. Saratov Univ. Math. Mech. Inform., 12:4 (2012),  71–79
  16. Thermomechanical orthogonality in nonlinear type-III thermoelasticity (GNIII)

    Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012),  72–82
  17. Upper and low bounds of azimuthal numbers related to elementary wave functions of an elliptic cylinder

    Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012),  68–81
  18. Cross-coupled type-III thermoelastic waves of a given azimuthal number in a waveguide under sidewall heat interchanging

    Izv. Saratov Univ. Math. Mech. Inform., 11:4 (2011),  86–108
  19. An optimal system constructing algorithm for symmetry algebra of three-dimensional equations of the perfect plasticity

    Izv. Saratov Univ. Math. Mech. Inform., 11:2 (2011),  61–77
  20. Generalized cross-coupled type-III thermoelastic waves propagating via a waveguide under sidewall heat interchange

    Izv. Saratov Univ. Math. Mech. Inform., 11:1 (2011),  59–70
  21. Propagation of thermoelastic impulse through a cylindrical waveguide under sidewall heat interchanging

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011),  221–227
  22. An optimal system of one-dimensional subalgebras for the symmetry algebra of three-dimensional equations of the perfect plasticity

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011),  196–220
  23. On wavenumbers of plane harmonic type III thermoelastic waves

    Izv. Saratov Univ. Math. Mech. Inform., 10:3 (2010),  46–53
  24. Coupled dynamic problems of hyperbolic thermoelasticity

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(2) (2009),  94–127
  25. Mathematical models and contemporary theories of physical fields

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(2) (2009),  41–94
  26. Dynamics of multilayered thermoviscoelastic plates

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(1) (2009),  61–78
  27. Coherent structures of heat transfer in a horizontal channel with stratified turbulent flow

    Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1988, no. 3,  77–81


© Steklov Math. Inst. of RAS, 2026