|
|
Publications in Math-Net.Ru
-
Numerical study of wave propagation in nonlinear dissipative material
Prikl. Mekh. Tekh. Fiz., 62:5 (2021), 114–118
-
Numerical solution of the problem of deformation of elastic solids under pulsed loading
Prikl. Mekh. Tekh. Fiz., 61:4 (2020), 128–140
-
Extension of the Günter derivatives to the Lipschitz domains and application to the boundary potentials of elastic waves
Prikl. Mekh. Tekh. Fiz., 61:1 (2020), 161–183
-
Compact finite elements based on modified equations of the plate theory
Mathematical notes of NEFU, 27:1 (2020), 6–20
-
Modified equations of finite-size layered plates made of orthotropic material. Comparison of the results of numerical calculations with analytical solutions
Prikl. Mekh. Tekh. Fiz., 58:5 (2017), 167–177
-
Nonclassical models of the theory of plates and shells
Prikl. Mekh. Tekh. Fiz., 57:5 (2016), 5–14
-
Simulation of stress-strain state in layered orthotropic plates
Yakutian Mathematical Journal, 22:2 (2015), 62–71
-
Equations of cylindrical bending of orthotropic plates with arbitrary conditions on their front surfaces
Prikl. Mekh. Tekh. Fiz., 55:1 (2014), 84–90
-
Numerical solution of dynamic problems of elastoplastic deformation of solids
Sib. Zh. Vychisl. Mat., 15:2 (2012), 151–156
-
Вариационное уравнение в двухслойной модели оболочки работнова и критическое время выпучивания оболочек при ползучести
Matem. Mod. Kraev. Zadachi, 1 (2010), 102–106
-
Rabotnov’s two-layer model of a shell and critical time of shell buckling during creep
Prikl. Mekh. Tekh. Fiz., 51:4 (2010), 198–206
-
Determination of physical and geometrical characteristics of a layered inhomogeneous medium
Sib. Èlektron. Mat. Izv., 7 (2010), 218–237
-
Rabotnov's Variational Equation of a Two-Layer Shell Model and the Critical Buckling Time of Reinforced Shells Under Creep
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010), 72–78
-
Построение уточнeнных уравнений упругого слоя и слоистых оболочек с использованием аппроксимаций напряжений и смещений полиномами Лежандра
Matem. Mod. Kraev. Zadachi, 1 (2009), 72–75
-
Solution of contact problems on the basis of a refined theory of plates and shells
Prikl. Mekh. Tekh. Fiz., 49:5 (2008), 169–176
-
Reducing three-dimensional elasticity problems to two-dimensional problems by approximating stresses and displacements by Legendre polynomials
Prikl. Mekh. Tekh. Fiz., 48:3 (2007), 179–190
-
Equations of an elastic anisotropic layer
Prikl. Mekh. Tekh. Fiz., 45:2 (2004), 188–198
-
Quasi-one-dimensional model of the rod-target interaction
Prikl. Mekh. Tekh. Fiz., 41:5 (2000), 205–210
-
Edge effects in the stress state of a thin elastic interlayer
Prikl. Mekh. Tekh. Fiz., 40:2 (1999), 189–195
-
Numerical modeling of stress states in two-dimensional problems of elasticity by the layers method
Prikl. Mekh. Tekh. Fiz., 35:6 (1994), 129–135
-
Calculation of plane equilibrium shapes of thin rods by the method of self-equilibrating variances
Prikl. Mekh. Tekh. Fiz., 35:2 (1994), 142–151
-
Estimate of limit load of elastic-plastic shells of revolution
Prikl. Mekh. Tekh. Fiz., 22:4 (1981), 146–150
-
Об одном возможном случае потери устойчивости плоской формы изгиба прямоугольной полосы
Prikl. Mekh. Tekh. Fiz., 3:3 (1962), 88–89
© , 2026