RUS  ENG
Full version
PEOPLE

Volchkov Yuriy Matveevich

Publications in Math-Net.Ru

  1. Numerical study of wave propagation in nonlinear dissipative material

    Prikl. Mekh. Tekh. Fiz., 62:5 (2021),  114–118
  2. Numerical solution of the problem of deformation of elastic solids under pulsed loading

    Prikl. Mekh. Tekh. Fiz., 61:4 (2020),  128–140
  3. Extension of the Günter derivatives to the Lipschitz domains and application to the boundary potentials of elastic waves

    Prikl. Mekh. Tekh. Fiz., 61:1 (2020),  161–183
  4. Compact finite elements based on modified equations of the plate theory

    Mathematical notes of NEFU, 27:1 (2020),  6–20
  5. Modified equations of finite-size layered plates made of orthotropic material. Comparison of the results of numerical calculations with analytical solutions

    Prikl. Mekh. Tekh. Fiz., 58:5 (2017),  167–177
  6. Nonclassical models of the theory of plates and shells

    Prikl. Mekh. Tekh. Fiz., 57:5 (2016),  5–14
  7. Simulation of stress-strain state in layered orthotropic plates

    Yakutian Mathematical Journal, 22:2 (2015),  62–71
  8. Equations of cylindrical bending of orthotropic plates with arbitrary conditions on their front surfaces

    Prikl. Mekh. Tekh. Fiz., 55:1 (2014),  84–90
  9. Numerical solution of dynamic problems of elastoplastic deformation of solids

    Sib. Zh. Vychisl. Mat., 15:2 (2012),  151–156
  10. Вариационное уравнение в двухслойной модели оболочки работнова и критическое время выпучивания оболочек при ползучести

    Matem. Mod. Kraev. Zadachi, 1 (2010),  102–106
  11. Rabotnov’s two-layer model of a shell and critical time of shell buckling during creep

    Prikl. Mekh. Tekh. Fiz., 51:4 (2010),  198–206
  12. Determination of physical and geometrical characteristics of a layered inhomogeneous medium

    Sib. Èlektron. Mat. Izv., 7 (2010),  218–237
  13. Rabotnov's Variational Equation of a Two-Layer Shell Model and the Critical Buckling Time of Reinforced Shells Under Creep

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 5(21) (2010),  72–78
  14. Построение уточнeнных уравнений упругого слоя и слоистых оболочек с использованием аппроксимаций напряжений и смещений полиномами Лежандра

    Matem. Mod. Kraev. Zadachi, 1 (2009),  72–75
  15. Solution of contact problems on the basis of a refined theory of plates and shells

    Prikl. Mekh. Tekh. Fiz., 49:5 (2008),  169–176
  16. Reducing three-dimensional elasticity problems to two-dimensional problems by approximating stresses and displacements by Legendre polynomials

    Prikl. Mekh. Tekh. Fiz., 48:3 (2007),  179–190
  17. Equations of an elastic anisotropic layer

    Prikl. Mekh. Tekh. Fiz., 45:2 (2004),  188–198
  18. Quasi-one-dimensional model of the rod-target interaction

    Prikl. Mekh. Tekh. Fiz., 41:5 (2000),  205–210
  19. Edge effects in the stress state of a thin elastic interlayer

    Prikl. Mekh. Tekh. Fiz., 40:2 (1999),  189–195
  20. Numerical modeling of stress states in two-dimensional problems of elasticity by the layers method

    Prikl. Mekh. Tekh. Fiz., 35:6 (1994),  129–135
  21. Calculation of plane equilibrium shapes of thin rods by the method of self-equilibrating variances

    Prikl. Mekh. Tekh. Fiz., 35:2 (1994),  142–151
  22. Estimate of limit load of elastic-plastic shells of revolution

    Prikl. Mekh. Tekh. Fiz., 22:4 (1981),  146–150
  23. Об одном возможном случае потери устойчивости плоской формы изгиба прямоугольной полосы

    Prikl. Mekh. Tekh. Fiz., 3:3 (1962),  88–89


© Steklov Math. Inst. of RAS, 2026