RUS  ENG
Full version
PEOPLE

Khushtova Fatima Gidovna

Publications in Math-Net.Ru

  1. On the equivalence of representations of Green’s functions of boundary value problems for the fractional diffusion equation

    Adyghe Int. Sci. J., 25:1 (2025),  11–18
  2. Stankovich integral transforms of some special functions

    Adyghe Int. Sci. J., 24:4 (2024),  80–90
  3. On some formulas for fractional integration of one Fox function with five parameters

    Adyghe Int. Sci. J., 24:1 (2024),  36–44
  4. Some integral transformations of a Fox function with four parameters

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:2 (2024),  367–377
  5. On some properties of a Fox function

    Chelyab. Fiz.-Mat. Zh., 8:2 (2023),  203–211
  6. To the properties of one Fox function

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 42:1 (2023),  140–149
  7. On some formulas for fractional integration of one Fox function with four parameters

    Adyghe Int. Sci. J., 22:4 (2022),  29–38
  8. On some properties of one special function

    Adyghe Int. Sci. J., 22:2 (2022),  34–40
  9. On the Mellin–Barnes integral representation of one special function

    News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2022, no. 6,  19–27
  10. Third Boundary-Value Problem in the Half-Strip for the $B$-Parabolic Equation

    Mat. Zametki, 109:2 (2021),  290–301
  11. The first boundary value problem in a rectangular domain for a differential equation with the Bessel operator and the Riemann–Liouville partial derivative

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:2 (2021),  241–256
  12. Differentiation formulas and the autotransformation formula for one particular case of the Fox function

    Reports of AIAS, 20:4 (2020),  15–18
  13. On the equivalence of two representations of Green's function of first boundary value problem for fractional-order diffusion equation

    Reports of AIAS, 20:2 (2020),  12–15
  14. The second boundary value problem in a half-strip for a b-parabolic equation with the gerasimov–caputo time derivative

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 33:4 (2020),  37–50
  15. Hankel integral transform of Mittag-Leffler type function

    News of the Kabardin-Balkar scientific center of RAS, 2019, no. 6,  102–106
  16. The Second Boundary-Value Problem in a Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann–Liouville Partial Derivative

    Mat. Zametki, 103:3 (2018),  460–470
  17. On the uniqueness of the solution of the Cauchy problem for the equation of fractional diffusion with Bessel operator

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:4 (2018),  774–784
  18. Second boundary-value problem in a half-strip for equation of parabolic type with the Bessel operator and Riemann–Liouville derivative

    Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7,  84–93
  19. Dirichlet boundary value problem in half-strip for fractional differential equation with Bessel operator and Riemann–Liouville partial derivative

    Ufimsk. Mat. Zh., 9:4 (2017),  117–128
  20. First Boundary-Value Problem in the Half-Strip for a Parabolic-Type Equation with Bessel Operator and Riemann–Liouville Derivative

    Mat. Zametki, 99:6 (2016),  921–928
  21. Cauchy problem for a parabolic equation with Bessel operator and Riemann–Liouville partial derivative

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016),  74–84
  22. The fundamental solution of a degenerate parabolic equation with Riemann-Liouville operator

    News of the Kabardin-Balkar scientific center of RAS, 2015, no. 6-2,  207–212
  23. Fundamental solution of the model equation of anomalous diffusion of fractional order

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015),  722–735
  24. Нелокальная краевая задача для нагруженного уравнения параболического типа со знакопеременной характеристической формой

    Matem. Mod. Kraev. Zadachi, 2 (2010),  279–281


© Steklov Math. Inst. of RAS, 2026