RUS  ENG
Full version
PEOPLE

Murashkin Eugenii Valeryevich

Publications in Math-Net.Ru

  1. Quartic corrections in energy potentials of hemitropic micropolar solids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025),  472–485
  2. On quadratic corrections of constitutive equations for a hemitropic micropolar elastic solid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:2 (2025),  274–293
  3. Two-dimensional Nye figures for hemitropic micropolar elastic solids

    Izv. Saratov Univ. Math. Mech. Inform., 24:1 (2024),  109–122
  4. Wave criteria for ultratropic micropolar elastic solids

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 4(62),  127–138
  5. Propagation of coupled harmonic waves in a thermally isolated cylindrical waveguide

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 4(62),  115–126
  6. Generalized nye figures for ultrahemitropic and ultraisotropic micropolar elastic solids

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 3(61),  140–153
  7. Wavenumbers of coupled plane thermoelastic wave in ultraisotropic medium

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 3(61),  128–139
  8. Plane harmonic thermoelastic waves in ultrahemitropic micropolar solid

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 2(60),  116–128
  9. Multiweight theory of weak discontinuities propagating in semi-isotropic thermoelastic micropolar medium

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 2(60),  87–106
  10. On a multiweight formulation of boundary conditions for surface growth theories

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2024, no. 1(59),  5–20
  11. Wave numbers of harmonic plane waves of translational and spinor displacements in a semiisotropic thermoelastic solid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:3 (2024),  445–461
  12. Multiweights thermomechanics of hemitropic micropolar solids

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 4(58),  86–120
  13. On the polyvariance of the base equations of coupled micropolar thermoelasticity

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 3(57),  112–128
  14. On a method of constructing nye figures for asymmetric theories of micropolar elasticity

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 3(57),  100–111
  15. Thermic and athermic plane harmonic waves in acentric isotropic solid

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 2(56),  99–107
  16. On the relationship of micropolar constitutive parameters of thermodynamic state potentials

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 1(55),  110–121
  17. Compatibility conditions in models of semi-isotropic thermoelastic solids

    Vestn. Chuvash. Gos. Ped. Univ. im.I.Ya. Yakovleva Ser.: Mekh. Pred. Sost., 2023, no. 1(55),  102–109
  18. Heat conduction of micropolar solids sensitive to mirror reflections of three-dimensional space

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165:4 (2023),  389–403
  19. Thermomechanical states of gyrotropic micropolar solids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023),  659–678
  20. Generalized pseudotensor formulations of the Stokes' integral theorem

    Izv. Saratov Univ. Math. Mech. Inform., 22:2 (2022),  205–215
  21. On the theory of fourth-rank hemitropic tensors in three-dimensional Euclidean spaces

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:3 (2022),  592–602
  22. On covariant non-constancy of distortion and inversed distortion tensors

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022),  36–47
  23. On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:4 (2021),  776–786
  24. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021),  457–474
  25. On the Neuber theory of micropolar elasticity. A pseudotensor formulation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:4 (2020),  752–761
  26. On a micropolar theory of growing solids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020),  424–444
  27. On a differential constraint in the continuum theory of growing solids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:4 (2019),  646–656
  28. Torsion of a growing shaft

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017),  684–698
  29. On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua

    Izv. Saratov Univ. Math. Mech. Inform., 15:1 (2015),  79–89
  30. The loading parameters calculation of a hollow sphere at the large elastocreep deformations

    Izv. Saratov Univ. Math. Mech. Inform., 14:1 (2014),  99–103
  31. A mathematical theory of plane harmonic coupled thermoelastic waves in type-I micropolar continua

    Izv. Saratov Univ. Math. Mech. Inform., 14:1 (2014),  77–87
  32. On Strong and Weak Discontinuities of the Coupled Thermomechanical Field in Micropolar Thermoelastic Type-II Continua

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(37) (2014),  85–97
  33. Остаточные напряжения в окрестности дефекта сплошности в условиях больших вязкоупругопластических деформаций

    Matem. Mod. Kraev. Zadachi, 1 (2010),  168–171
  34. Математическая модель процессов релаксации напряжений и ползучести материала в условиях больших деформаций

    Matem. Mod. Kraev. Zadachi, 1 (2010),  44–47
  35. Формирование и релаксация напряжений вблизи дефекта сплошности в условиях неустановившейся ползучести

    Matem. Mod. Kraev. Zadachi, 1 (2008),  45–47
  36. On the residual stresses in the vicinity of a cylindrical discontinuity in a viscoelastoplastic material

    Prikl. Mekh. Tekh. Fiz., 47:2 (2006),  110–119


© Steklov Math. Inst. of RAS, 2026