RUS  ENG
Full version
PEOPLE

Bogdanova Sofiya Borisovna

Publications in Math-Net.Ru

  1. On a strict mathematical definition of the brachistochrone's shape taking into account the thermal effect in the contact zone

    University proceedings. Volga region. Physical and mathematical sciences, 2025, no. 1,  29–44
  2. An application of the plane curve's standard basis to a certain class of problems from classical mechanics

    J. Sib. Fed. Univ. Math. Phys., 17:4 (2024),  537–543
  3. On the new problems in stereometry

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 46:1 (2024),  22–51
  4. On the trajectories of bodies in non-inertial reference frames. Part II

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024, no. 91,  51–60
  5. Some miniatures with a cube

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 44:3 (2023),  39–57
  6. On the trajectories of bodies in non-inertial reference frames

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 84,  68–80
  7. On the brachistochrone shape under the Magnus effect

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023, no. 81,  87–96
  8. On some unknown results related to the nontrivial properties of ordinary triangles. part 2

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 39:2 (2022),  197–221
  9. On the shape of the brachistichrone rotating in a vertical plane

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 78,  86–98
  10. On some unknown results related to the nontrivial properties of ordinary triangles. part 1

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 37:4 (2021),  216–234
  11. On the varying brachistochrone shape with allowance for chute loading limitation

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 73,  60–70
  12. To the theory of synchronization of interacting pendulums oscillating in the parallel planes

    Dal'nevost. Mat. Zh., 20:1 (2020),  15–37
  13. O the theory of a space brachistochrone

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68,  53–60
  14. To the theory of motion of bodies with variable mass

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 65,  83–91
  15. On a class of planar geometrical curves with constant reaction forces acting to particles moving along them

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 160 (2019),  28–31
  16. On the question accounting of the resistance force at the hinge point of setting physical pendulum and its influence on the dynamics of movement

    Izvestiya VUZ. Applied Nonlinear Dynamics, 27:1 (2019),  53–62
  17. To the theory of thermal conduction and conductivity of metal fractals

    Vestnik KRAUNC. Fiz.-Mat. Nauki, 29:4 (2019),  98–109
  18. To the question of fractional differentiation. Part II

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 25:3 (2019),  7–11
  19. On the class of two-dimensional geodesic curves in the field of the gravity force

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 58,  5–13
  20. Analytical and Numerical Solution of the Problem on Brachistochrones in Some General Cases

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 145 (2018),  114–122
  21. On fractional differentiation

    Vestnik SamU. Estestvenno-Nauchnaya Ser., 24:3 (2018),  7–13
  22. On the theory of nonlinear thermal conductivity

    Zhurnal Tekhnicheskoi Fiziki, 86:2 (2016),  1–7
  23. To the theory of the Landau–Lifshitz–Hilbert equation

    Fizika Tverdogo Tela, 57:5 (2015),  913–916
  24. To the theory of the longitudinal magnetic susceptibility of quasi-three-dimensional ferromagnetic dielectrics

    Fizika Tverdogo Tela, 54:1 (2012),  70–73
  25. К теории продольной магнитной восприимчивости в магнетиках с фрактальной структурой

    Matem. Mod. Kraev. Zadachi, 2 (2010),  36–38
  26. О теплопроводности физических пространств с почти целой трeхмерной размерностью

    Matem. Mod. Kraev. Zadachi, 3 (2009),  52–54
  27. К вопросу о теплопроводности физических структур нецелой размерности

    Matem. Mod. Kraev. Zadachi, 3 (2008),  65–67


© Steklov Math. Inst. of RAS, 2026