|
|
Publications in Math-Net.Ru
-
Numerical solution of a boundary value problem describing convective current of viscous incompressible fluid in a horizontal layer
Meždunar. nauč.-issled. žurn., 2025, no. 10(160)S, 1–7
-
The Inhomogeneous Couette Flow of a Micropolar Fluid
Rus. J. Nonlin. Dyn., 21:3 (2025), 345–358
-
Steady-state non-uniform Poiseuille shear flows with Navier boundary condition
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:4 (2025), 763–777
-
Inhomogeneous Ekman flow
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025), 486–502
-
Wind influence on convective flow of viscous incompressible vertically swirling fluid
Meždunar. nauč.-issled. žurn., 2024, no. 5(143)S, 1–12
-
Exact solution to the velocity field description for Couette–Poiseulle flows of binary liquids
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024), 759–772
-
Inhomogeneous Couette flows for a two-layer fluid
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023), 530–543
-
Exact Solutions to the Navier – Stokes Equations
for Describing the Convective Flows
of Multilayer Fluids
Rus. J. Nonlin. Dyn., 18:3 (2022), 397–410
-
Exact solution of the Couette–Poiseuille type for steady concentration flows
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 164:4 (2022), 285–301
-
Inhomogeneous Poiseuille flow
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77, 68–85
-
Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect
Bulletin of Irkutsk State University. Series Mathematics, 37 (2021), 17–30
-
Exact solutions for steady convective layered flows with a spatial acceleration
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 7, 12–22
-
Exact solutions to the Navier–Stokes equations describing stratified fluid flows
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021), 491–507
-
A Couette-type flow with a perfect slip condition on a solid surface
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 74, 79–94
-
A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters
Bulletin of Irkutsk State University. Series Mathematics, 32 (2020), 33–48
-
Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid
Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020), 79–87
-
Convective layered flows of a vertically whirling viscous incompressible fluid. Temperature field investigation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020), 528–541
-
Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019), 341–360
-
A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017), 736–751
-
A large-scale layered stationary convection of a incompressible viscous fluid under the action
of shear stresses at the upper boundary. Velocity field investigation
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017), 180–196
-
Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems
Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013), 244–252
-
Итерационный процесс расчета параметров равновесия при жестком нагружении системы, реализующей трехосное растяжение куба из упругопластического разупрочняющегося материала
Matem. Mod. Kraev. Zadachi, 1 (2010), 73–78
-
О среде генки с разупрочнением
Matem. Mod. Kraev. Zadachi, 1 (2009), 210–213
-
О свойствах кубического элемента при жестком трехосном деформировании
Matem. Mod. Kraev. Zadachi, 1 (2008), 301–308
-
Бифуркационные множества в задаче о трехосном растяжении элементарного куба
Matem. Mod. Kraev. Zadachi, 1 (2007), 54–56
© , 2026