RUS  ENG
Full version
PEOPLE

Burmasheva Natal'ya Vladimirovna

Publications in Math-Net.Ru

  1. Numerical solution of a boundary value problem describing convective current of viscous incompressible fluid in a horizontal layer

    Meždunar. nauč.-issled. žurn., 2025, no. 10(160)S,  1–7
  2. The Inhomogeneous Couette Flow of a Micropolar Fluid

    Rus. J. Nonlin. Dyn., 21:3 (2025),  345–358
  3. Steady-state non-uniform Poiseuille shear flows with Navier boundary condition

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:4 (2025),  763–777
  4. Inhomogeneous Ekman flow

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:3 (2025),  486–502
  5. Wind influence on convective flow of viscous incompressible vertically swirling fluid

    Meždunar. nauč.-issled. žurn., 2024, no. 5(143)S,  1–12
  6. Exact solution to the velocity field description for Couette–Poiseulle flows of binary liquids

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 28:4 (2024),  759–772
  7. Inhomogeneous Couette flows for a two-layer fluid

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:3 (2023),  530–543
  8. Exact Solutions to the Navier – Stokes Equations for Describing the Convective Flows of Multilayer Fluids

    Rus. J. Nonlin. Dyn., 18:3 (2022),  397–410
  9. Exact solution of the Couette–Poiseuille type for steady concentration flows

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 164:4 (2022),  285–301
  10. Inhomogeneous Poiseuille flow

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77,  68–85
  11. Exact solutions to the Oberbeck–Boussinesq equations for shear flows of a viscous binary fluid with allowance made for the Soret effect

    Bulletin of Irkutsk State University. Series Mathematics, 37 (2021),  17–30
  12. Exact solutions for steady convective layered flows with a spatial acceleration

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 7,  12–22
  13. Exact solutions to the Navier–Stokes equations describing stratified fluid flows

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 25:3 (2021),  491–507
  14. A Couette-type flow with a perfect slip condition on a solid surface

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 74,  79–94
  15. A class of exact solutions for two–dimensional equations of geophysical hydrodynamics with two Coriolis parameters

    Bulletin of Irkutsk State University. Series Mathematics, 32 (2020),  33–48
  16. Exact solution of Navier-Stokes equations describing spatially inhomogeneous flows of a rotating fluid

    Trudy Inst. Mat. i Mekh. UrO RAN, 26:2 (2020),  79–87
  17. Convective layered flows of a vertically whirling viscous incompressible fluid. Temperature field investigation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 24:3 (2020),  528–541
  18. Convective layered flows of a vertically whirling viscous incompressible fluid. Velocity field investigation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 23:2 (2019),  341–360
  19. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Temperature and presure field investigation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:4 (2017),  736–751
  20. A large-scale layered stationary convection of a incompressible viscous fluid under the action of shear stresses at the upper boundary. Velocity field investigation

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017),  180–196
  21. Newton–Kantorovich method in the problem of finding nonunique solutions of equilibrium equations for discrete gradient mechanical systems

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013),  244–252
  22. Итерационный процесс расчета параметров равновесия при жестком нагружении системы, реализующей трехосное растяжение куба из упругопластического разупрочняющегося материала

    Matem. Mod. Kraev. Zadachi, 1 (2010),  73–78
  23. О среде генки с разупрочнением

    Matem. Mod. Kraev. Zadachi, 1 (2009),  210–213
  24. О свойствах кубического элемента при жестком трехосном деформировании

    Matem. Mod. Kraev. Zadachi, 1 (2008),  301–308
  25. Бифуркационные множества в задаче о трехосном растяжении элементарного куба

    Matem. Mod. Kraev. Zadachi, 1 (2007),  54–56


© Steklov Math. Inst. of RAS, 2026