RUS  ENG
Full version
PEOPLE

Beshtokov Murat KHamidbievich

Publications in Math-Net.Ru

  1. Finite-difference method for solving the first boundary value problem for a non-stationary loaded moisture transfer equation

    University proceedings. Volga region. Physical and mathematical sciences, 2025, no. 2,  44–62
  2. Higher-order difference schemes for the loaded heat conduction equations with boundary conditions of the first kind

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 29:2 (2025),  220–240
  3. Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator

    Computer Research and Modeling, 16:2 (2024),  353–373
  4. Initial-boundary problems for the moisture transfer equation with fractional derivatives of different orders and a non-local linear source

    Vladikavkaz. Mat. Zh., 26:3 (2024),  5–23
  5. A locally one-dimensional scheme for the third initial boundary value problem for a multidimensional Sobolev-type equation with a memory effect

    Vladikavkaz. Mat. Zh., 26:1 (2024),  36–55
  6. On the convergence of a high order approximation difference scheme for the modified equation of fractional order moisture transfer

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2024, no. 3,  42–54
  7. Numerical solution of initial-boundary value problems for a multi-dimensional pseudoparabolic equation

    Ufimsk. Mat. Zh., 15:3 (2023),  14–41
  8. Numerical methods for solving nonlocal boundary value problems for generalized loaded Hallaire equations

    Vladikavkaz. Mat. Zh., 25:3 (2023),  15–35
  9. Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2023, no. 3,  77–91
  10. The method of total approximation of the solution of the Dirichlet problem for a multidimensional Sobolev-type equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 4,  15–26
  11. On a difference scheme for solution of the Dirichlet problem for diffusion equation with a fractional Caputo derivative in the multidimensional case in a domain with an arbitrary boundary

    Vladikavkaz. Mat. Zh., 24:3 (2022),  37–54
  12. Boundary value problems for Sobolev type equations of fractional order with memory effect

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:4 (2022),  607–629
  13. Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:4 (2022),  502–527
  14. Difference methods for solving nonlocal boundary value problems for fractional-order differential convection-diffusion equations with memory effect

    Dal'nevost. Mat. Zh., 21:1 (2021),  3–25
  15. Grid method for approximate solution of initial-boundary value problems for generalized convection-diffusion equations

    Vladikavkaz. Mat. Zh., 23:3 (2021),  28–44
  16. Economical factorized schemes for third-order pseudoparabolic equations

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2021, no. 3,  44–57
  17. A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:3 (2021),  384–408
  18. Summary approximation method for a third order multidimensional pseudoparabolic equation

    Mathematical Physics and Computer Simulation, 24:4 (2021),  5–18
  19. Local one-dimensional scheme for the first initial-boundary value problem for the multidimensional fractional-order convection–diffusion equation

    Zh. Vychisl. Mat. Mat. Fiz., 61:7 (2021),  1082–1100
  20. К краевым задачам для интегро-дифференциальных уравнений дробного порядка

    Mat. Tr., 23:1 (2020),  16–36
  21. Boundary value problems for the generalized modified moisture transfer equation and difference methods for their numerical implementation

    Applied Mathematics & Physics, 52:2 (2020),  128–138
  22. Difference methods for solving non-local boundary value problems for fractional-order pseudo-parabolic equations with the Bessel operator

    Sib. Zh. Vychisl. Mat., 23:3 (2020),  265–287
  23. Finite-difference method for solving of a nonlocal boundary value problem for a loaded thermal conductivity equation of the fractional order

    Vladikavkaz. Mat. Zh., 22:4 (2020),  45–57
  24. A grid method for solving the first initial boundary value problem for a loaded differential equation of fractional order convection diffusion

    Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 3,  27–40
  25. Boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator and difference methods for their solution

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:2 (2020),  158–175
  26. On the numerical solution of initial-boundary value problems for the convection-diffusion equation with a fractional Сaputo derivative and a nonlocal linear source

    Mathematical Physics and Computer Simulation, 23:4 (2020),  35–50
  27. Boundary-value problems for loaded pseudoparabolic equations of fractional order and difference methods of their solving

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 2,  3–12
  28. Grid methods for solving nonlocal boundary value problems for the convection-diffusion equation of fractional order with degeneration

    Applied Mathematics & Physics, 51:3 (2019),  347–365
  29. Erratum

    Ufimsk. Mat. Zh., 11:3 (2019),  133
  30. Boundary value problems for degenerate and degenerate fractional order differential equations with non-local linear source and difference methods for their numerical implementation

    Ufimsk. Mat. Zh., 11:2 (2019),  36–55
  31. Nonlocal boundary value problems for a fractional-order convection-diffusion equation

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019),  459–482
  32. Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative

    Zh. Vychisl. Mat. Mat. Fiz., 59:2 (2019),  185–202
  33. To boundary-value problems for degenerating pseudoparabolic equations with Gerasimov–Caputo fractional derivative

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 10,  3–16
  34. Nonlocal boundary value problems for Sobolev-type fractional equations and grid methods for solving them

    Mat. Tr., 21:2 (2018),  72–101
  35. A boundary value problem for a degenerate moisture transfer equation with a condition of the third kind

    Vladikavkaz. Mat. Zh., 19:4 (2017),  13–26
  36. Differential and difference boundary value problem for loaded third-order pseudo-parabolic differential equations and difference methods for their numerical solution

    Zh. Vychisl. Mat. Mat. Fiz., 57:12 (2017),  2021–2041
  37. Difference method for solving a nonlocal boundary value problem for a degenerating third-order pseudo-parabolic equation with variable coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1780–1794
  38. A numerical method for solving one nonlocal boundary value problem for a third-order hyperbolic equation

    Zh. Vychisl. Mat. Mat. Fiz., 54:9 (2014),  1497–1514
  39. A priori estimates of the solutions of nonlocal boundary value problems for a pseudo-parabolic equation

    Vladikavkaz. Mat. Zh., 15:3 (2013),  19–36
  40. Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(33) (2013),  15–24
  41. On convergence of the iterative process for the third order pseudo-parabolic equation with nonlocal boundary value conditions in a multidimensional domain

    Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(31) (2013),  113–119
  42. About one non - local border problem for equation of moisture transfer

    News of the Kabardin-Balkar scientific center of RAS, 2012, no. 6,  5–13
  43. Existence and uniqueness of the solution of one non - local boundary problem for the equation of hyperbolic type of the third order

    News of the Kabardin-Balkar scientific center of RAS, 2011, no. 6,  17–21
  44. Об одной априорной оценке решения третье краевой задачи для уравнения третьего порядка гиперболического типа в многомерной области

    Matem. Mod. Kraev. Zadachi, 3 (2008),  31–34
  45. On convergence of the difference schemes which approximate the third boundary-value problem for an hyperbolic equation in multidimensional domain with a non-local boundary condition

    News of the Kabardin-Balkar scientific center of RAS, 2007, no. 3-1,  88–96
  46. Об одной априорной оценке решения нелокальной краевой задачи для псевдопараболического уравнения третьего порядка в многомерной области

    Matem. Mod. Kraev. Zadachi, 3 (2007),  35–37
  47. On coincidence of the differential scheme of non-local border problem for pseudo-parabolic equation of the third order with variable factor

    News of the Kabardin-Balkar scientific center of RAS, 2006, no. 2,  86–93
  48. Об одной априорной оценке решения нелокальной краевой задачи для псевдопараболического уравнения третьего порядка

    Matem. Mod. Kraev. Zadachi, 3 (2006),  62–65


© Steklov Math. Inst. of RAS, 2026