RUS  ENG
Full version
PEOPLE

Mironenko Vladimir Romanovich

Publications in Math-Net.Ru

  1. Определение оптимального набора линий поглощения для измерения максимальной температуры в пространственно неоднородной газовой среде методом абсорбционной спектроскопии с диодными лазерами

    Optics and Spectroscopy, 133:11 (2025),  1176–1183
  2. Hot zone temperature measurement by 1f modulation diode laser absorption spectroscopy with logarithmic signal conversion

    Kvantovaya Elektronika, 52:9 (2022),  831–837
  3. Temperature estimation in a spatially inhomogeneous flame by diode laser absorption spectroscopy

    Kvantovaya Elektronika, 50:3 (2020),  309–314
  4. Diagnostics of hot zones by absorption spectroscopy with diode lasers (review)

    Optics and Spectroscopy, 127:1 (2019),  55–65
  5. Thermometry of an open spatially inhomogeneous flame by diode laser absorption spectroscopy

    Kvantovaya Elektronika, 48:11 (2018),  1055–1061
  6. Measurement of non-stationary gas flow parameters using diode laser absorption spectroscopy at high temperatures and pressures

    TVT, 56:1 (2018),  92–103
  7. Measurement of transient gas flow parameters by diode laser absorption spectroscopy

    Kvantovaya Elektronika, 45:4 (2015),  377–384
  8. Измерение температуры и концентрации паров воды в сверхзвуковой камере сгорания методом абсорбционной спектроскопии

    TVT, 48:supplementary issue (2010),  9–22
  9. Measurements of gas parameters in plasma-assisted supersonic combustion processes using diode laser spectroscopy

    Kvantovaya Elektronika, 39:9 (2009),  869–878
  10. Answer to the letter of A. F. Suchkov to the Editor of Kvantovaya Elektronika

    Kvantovaya Elektronika, 18:5 (1991),  655–656
  11. Measurement of the emission line width of TEA CO2 lasers using tunable diode lasers

    Kvantovaya Elektronika, 17:8 (1990),  1077–1080
  12. Role of the mode composition of laser radiation in the case of pulsed infrared excitation of molecules

    Kvantovaya Elektronika, 16:8 (1989),  1664–1671
  13. Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer

    Kvantovaya Elektronika, 16:1 (1989),  146–152
  14. Theory of intracavity detection using a tunable semiconductor laser with an external resonator

    Kvantovaya Elektronika, 15:3 (1988),  590–600
  15. Intracavity detection of absorption with the aid of a tunable semiconductor laser emitting in the middle infrared range

    Kvantovaya Elektronika, 15:3 (1988),  582–589
  16. Theoretical limits of the sensitivity thresholds of intracavity laser absorption spectroscopy

    Kvantovaya Elektronika, 12:8 (1985),  1676–1685
  17. Natural fluctuations in a multimode standing-wave laser

    Kvantovaya Elektronika, 9:11 (1982),  2234–2243
  18. Natural noise and jaggedness of the emission spectrum of a multimode solid-state laser

    Kvantovaya Elektronika, 9:3 (1982),  483–488
  19. Influence of spatial inversion-burnup inhomogeneities on the optimal position of the active medium in a laser for intracavity spectroscopy

    Kvantovaya Elektronika, 7:10 (1980),  2069–2076
  20. Influence of saturation absorption on the sensitivity of intracavity spectroscopy

    Kvantovaya Elektronika, 5:11 (1978),  2476–2479
  21. Use of a cw tunable dye laser in recording the absorption spectrum of atmospheric air inside the laser resonator

    Kvantovaya Elektronika, 2:1 (1975),  171–173
  22. In-cavity absorption spectroscopy with a continuous dye laser

    UFN, 117:3 (1975),  574–576
  23. Conversion of carbon dioxide laser radiation into visible light in proustite

    Kvantovaya Elektronika, 1:8 (1974),  1742–1746
  24. Influence of the solvent on the output parameters of a cw dye laser

    Kvantovaya Elektronika, 1:1 (1974),  204–206

  25. On the observation of molecular rotational spectra in condensed media

    UFN, 179:12 (2009),  1368–1370
  26. Errata to the article: Quantum threshold of the sensitivity of an intracavity traveling-wave laser spectrometer

    Kvantovaya Elektronika, 16:5 (1989),  1087


© Steklov Math. Inst. of RAS, 2026