|
|
Publications in Math-Net.Ru
-
Configuration space in second boundary value problem of non-classical plate theory
Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013), 75–82
-
Solvability of a connected thermoelasticity problem for three-layer shells
Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 9, 66–71
-
Solvability of evolutionary equations in generalized transmission problems for shallow shells
Izv. Saratov Univ. Math. Mech. Inform., 11:4 (2011), 17–26
-
Корректность эволюционных уравнений в неклассической теории неоднородных пологих оболочек на упругом основании
Matem. Mod. Kraev. Zadachi, 3 (2006), 129–131
-
Упрощенный вариант задачи трансмиссии для незамкнутой пологой ортотропной оболочки переменной толщины
Matem. Mod. Kraev. Zadachi, 1 (2006), 107–112
-
Корректность эволюционных уравнений в неклассической теории пологих оболочек с начальными неправильностями
Matem. Mod. Kraev. Zadachi, 3 (2005), 130–133
-
О корректности неклассической задачи трансмиссии для оболочек переменной толщины c малой инерцией продольных перемещений и инерций вращения
Matem. Mod. Kraev. Zadachi, 3 (2005), 127–130
-
The rate of convergence of the Bubnov–Galerkin method for hyperbolic equations
Differ. Uravn., 26:2 (1990), 323–333
-
The rate of convergence of the Rothe–Galerkin method for a nonclassical system of differential equations
Differ. Uravn., 25:7 (1989), 1208–1219
-
Symmetrization of a hyperbolic equation
Differ. Uravn., 25:4 (1989), 652–659
-
Symmetrization of an operator of a boundary value problem for a hyperbolic equation
Differ. Uravn., 25:3 (1989), 523–525
-
65N99 Some iterative algorithms for solving equations of von Kármán type
Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 9, 5–14
-
Rate of convergence of the Bubnov–Galerkin method for a nonclassical system of differential equations
Differ. Uravn., 23:8 (1987), 1407–1416
-
The existence of a solution of a strongly nonlinear system of elliptic type
Differ. Uravn., 22:10 (1986), 1764–1770
-
The existence of a solution to a nonlinear connected problem of thermoelasticity
Differ. Uravn., 20:9 (1984), 1583–1588
-
Solution of physically nonlinear problems of the theory of plates and shells, rectangular in the design, by the method of variational iterations
Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 5, 78–80
-
On the question of the solution of nonlinear boundary value problems by the Kantorovich–Vlasov method
Differ. Uravn., 16:12 (1980), 2186–2189
-
On the solution of the problem of synthesis with account taken of a stationary representation of functionals
Differ. Uravn., 15:4 (1979), 738–739
-
On the estimation of the classical solution of a mixed problem for a hyperbolic equation
Differ. Uravn., 14:8 (1978), 1448–1454
© , 2026