RUS  ENG
Full version
PEOPLE

Ibragimova Liliya Sunagatovna

Publications in Math-Net.Ru

  1. Lurie equations and equivalent Hamiltonian systems

    Avtomat. i Telemekh., 2025, no. 1,  27–43
  2. Investigation of the problem on a parametric resonance in Lurie systems with weakly oscillating coefficients

    Avtomat. i Telemekh., 2022, no. 2,  107–121
  3. Perturbation theory methods in problem of parametric resonance for linear periodic Hamiltonian systems

    Ufimsk. Mat. Zh., 13:3 (2021),  178–195
  4. Methods for studying the stability of linear periodic systems depending on a small parameter

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 163 (2019),  113–126
  5. A study of the boundaries of stability regions in two-parameter dynamical systems

    Avtomat. i Telemekh., 2017, no. 10,  74–89
  6. Boundaries of stability domains for equilibrium points of differential equations with parameters

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 132 (2017),  161–164
  7. Mathematical modeling of dynamics of the number of specimens in a biological population under changing external conditions on the example of the Burzyan wild-hive honeybee (Apismellifera L., 1758)

    Mat. Biolog. Bioinform., 12:1 (2017),  224–236
  8. The asymptotic formulae in the problem on constructing hyperbolicity and stability regions of dynamical systems

    Ufimsk. Mat. Zh., 8:3 (2016),  59–81
  9. An operator method for approximate investigation of a regular bifurcation in multiparameter dynamical systems

    Ufimsk. Mat. Zh., 2:4 (2010),  3–26
  10. The Andronov–Hopf bifurcation with weakly oscillating parameters

    Avtomat. i Telemekh., 2008, no. 1,  39–44
  11. Parameter functionalization and its application to the problem of local bifurcations in dynamic systems

    Avtomat. i Telemekh., 2007, no. 4,  3–12
  12. Точки бифуркации вынужденных колебаний

    Matem. Mod. Kraev. Zadachi, 3 (2005),  107–110


© Steklov Math. Inst. of RAS, 2026