RUS  ENG
Full version
PEOPLE

Krivenko Mikhail Petrovich

Publications in Math-Net.Ru

  1. Estimation of parameters of a mixture of normal multivariate distributions with constraints on covariance matrices

    Inform. Primen., 19:2 (2025),  2–8
  2. Comparative analysis of queuing system stability tests

    Inform. Primen., 19:1 (2025),  61–66
  3. ARIMA-modeling of the sequence of sojourn times in queueing systems

    Sistemy i Sredstva Inform., 35:3 (2025),  90–104
  4. Statistical criterion for queuing system stability based on input and output flows

    Inform. Primen., 18:1 (2024),  54–60
  5. Modeling of the input flow of LANL Mustang computing cluster workloads

    Sistemy i Sredstva Inform., 34:3 (2024),  109–122
  6. Statistical criterion for queuing system stability based on sojourn times

    Sistemy i Sredstva Inform., 34:2 (2024),  55–65
  7. Criteria for choosing the factorization model dimensionality

    Inform. Primen., 17:2 (2023),  50–56
  8. Time series monotonic trend analysis

    Sistemy i Sredstva Inform., 33:3 (2023),  17–28
  9. Efficient computations in matrix factorization with missing components

    Sistemy i Sredstva Inform., 33:1 (2023),  78–89
  10. Model selection for matrix factorization with missing components

    Inform. Primen., 16:3 (2022),  52–58
  11. Noisy text analytics

    Sistemy i Sredstva Inform., 32:4 (2022),  45–58
  12. Analysis of a monotone trend in a multiparameter case

    Sistemy i Sredstva Inform., 32:1 (2022),  83–93
  13. Soft computing in problems of medical diagnostics

    Inform. Primen., 15:2 (2021),  52–59
  14. Distributions of likelihood ratio statistics for monotone trend detection

    Sistemy i Sredstva Inform., 31:4 (2021),  27–37
  15. Computing based on probabilistic principal component analysis model

    Sistemy i Sredstva Inform., 31:3 (2021),  70–79
  16. Sequential analysis of serial measurements based on multivariate reference regions

    Inform. Primen., 14:2 (2020),  86–91
  17. Software of research in statistical data analysis

    Sistemy i Sredstva Inform., 30:4 (2020),  4–13
  18. Bayesian classification of serial multivariate data

    Sistemy i Sredstva Inform., 30:1 (2020),  34–45
  19. Data model selection in medical diagnostic tasks

    Inform. Primen., 13:4 (2019),  27–29
  20. Computer model of the emergence of collective robot behavior

    News of the Kabardin-Balkar scientific center of RAS, 2019, no. 6,  21–26
  21. Dimensionality reduction for mixture of probabilistic principal component analyzers in relation to the tasks of medical diagnostics

    Sistemy i Sredstva Inform., 29:4 (2019),  4–13
  22. Selecting the dimensionality for mixture of probabilistic principal component analyzers

    Sistemy i Sredstva Inform., 29:3 (2019),  4–15
  23. Supervised learning classification of data taking into account principal component analysis

    Inform. Primen., 12:3 (2018),  56–61
  24. Principal axes reconstruction

    Inform. Primen., 12:1 (2018),  71–77
  25. Supervised learning classification of incomplete clinical data

    Inform. Primen., 11:3 (2017),  27–33
  26. High-density multivariate reference region

    Inform. Primen., 11:2 (2017),  59–64
  27. Significance tests of feature selection for classification

    Inform. Primen., 10:3 (2016),  32–40
  28. Models for representation and treatment of reference values

    Inform. Primen., 9:2 (2015),  63–74
  29. Comparative analysis of regression analysis procedures

    Inform. Primen., 8:3 (2014),  70–78
  30. Analysis of data homogeneity of the chemical compositions of stones in case of urolithiasis

    Inform. Primen., 7:4 (2013),  94–104
  31. The information-analytical computer system “Megalith” in optimization of the diagnosis and treatment of urolithiasis

    Inform. Primen., 7:4 (2013),  82–93
  32. Preprocessing of text recognition under the poor quality image

    Inform. Primen., 6:4 (2012),  49–56
  33. Nonparametric estimation of Bayesian classifier elements

    Inform. Primen., 4:2 (2010),  13–24
  34. Splitting of distribution mixture in two components

    Inform. Primen., 2:4 (2008),  48–56
  35. Recognition of image object with different picture size elements

    Sistemy i Sredstva Inform., 2007, no. 17,  30–51
  36. On the distribution of the number of steps in an estimate of monotone trend

    Teor. Veroyatnost. i Primenen., 41:1 (1996),  53–64
  37. Properties of Elements of an Estimate of Monotonous Trend

    Teor. Veroyatnost. i Primenen., 33:2 (1988),  336–348


© Steklov Math. Inst. of RAS, 2026