RUS  ENG
Full version
PEOPLE

Maksimenko Aleksandr Nikolaevich

Publications in Math-Net.Ru

  1. Branch and bound algorithm for the traveling salesman problem is not a direct type algorithm

    Model. Anal. Inform. Sist., 27:1 (2020),  72–85
  2. On a family of 0/1-polytopes with an NP-complete criterion for vertex nonadjacency relation

    Diskr. Mat., 29:2 (2017),  29–39
  3. Boolean quadric polytopes are faces of linear ordering polytopes

    Sib. Èlektron. Mat. Izv., 14 (2017),  640–646
  4. Complexity of combinatorial optimization problems in terms of face lattice of associated polytopes

    Diskretn. Anal. Issled. Oper., 23:3 (2016),  61–80
  5. A special role of Boolean quadratic polytopes among other combinatorial polytopes

    Model. Anal. Inform. Sist., 23:1 (2016),  23–40
  6. Characteristics of complexity: clique number of a polytope graph and rectangle covering number

    Model. Anal. Inform. Sist., 21:5 (2014),  116–130
  7. Traveling salesman polytopes and cut polytopes. Affine reducibility

    Diskr. Mat., 25:2 (2013),  31–38
  8. The common face of some $0/1$-polytopes with NP-complete nonadjacency relation

    Fundam. Prikl. Mat., 18:2 (2013),  105–118
  9. $k$-neighborly faces of the Boolean quadric polytopes

    Fundam. Prikl. Mat., 18:2 (2013),  95–103
  10. An analog of the Cook theorem for polytopes

    Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 8,  34–42
  11. SAT polytopes are faces of polytopes of the traveling salesman problem

    Diskretn. Anal. Issled. Oper., 18:3 (2011),  76–83
  12. On the number of facets of a 2-neighborly polytope

    Model. Anal. Inform. Sist., 17:1 (2010),  76–82
  13. The diameter of the ridge-graph of a cyclic polytope

    Diskr. Mat., 21:2 (2009),  146–152
  14. Polyhedron combinatorial properties associated with the shortest path problem

    Zh. Vychisl. Mat. Mat. Fiz., 44:9 (2004),  1693–1696


© Steklov Math. Inst. of RAS, 2026