RUS  ENG
Full version
PEOPLE

Popov Anatolii Stepanovich

Publications in Math-Net.Ru

  1. Cubature formulas on the sphere that are invariant under dihedral rotation groups

    Sib. Zh. Vychisl. Mat., 28:1 (2025),  89–99
  2. The search of the best cubature formulas on the sphere that are invariant under the icosahedral rotation group

    Sib. Zh. Vychisl. Mat., 26:4 (2023),  415–430
  3. Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion

    Sib. Èlektron. Mat. Izv., 18:1 (2021),  703–709
  4. Cubature formulas on the sphere that are invariant under the transformations of the dihedral group of rotations $D_4$

    Sib. Èlektron. Mat. Izv., 17 (2020),  964–970
  5. Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$

    Sib. Èlektron. Mat. Izv., 16 (2019),  1196–1204
  6. Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $\mathrm{D}_{5d}$

    Sib. Èlektron. Mat. Izv., 15 (2018),  389–396
  7. Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons

    Sib. Èlektron. Mat. Izv., 14 (2017),  190–198
  8. The cubature formulas on a sphere invariant to the icosahedral group of rotations with inversion

    Sib. Zh. Vychisl. Mat., 20:4 (2017),  413–423
  9. Cubature formulas on a sphere invariant under the dihedral group D2h

    Sib. Èlektron. Mat. Izv., 13 (2016),  252–259
  10. Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $\mathrm{D_{4h}}$

    Sib. Èlektron. Mat. Izv., 12 (2015),  457–464
  11. Cubature formulas on a sphere invariant under the tetrahedral group with inversion

    Sib. Èlektron. Mat. Izv., 11 (2014),  372–379
  12. The cubature formulas on a sphere invariant with respect to a dihedral group of rotations with inversion $D_{6h}$

    Sib. Zh. Vychisl. Mat., 16:1 (2013),  57–62
  13. An analog to Gaussian quadrature implemented on a specific trigonometric basis

    Sib. Zh. Vychisl. Mat., 13:4 (2010),  439–450
  14. The cubature formulas on a sphere that are invariant with respect to the icosahedral group of rotations

    Sib. Zh. Vychisl. Mat., 11:4 (2008),  433–440
  15. The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere

    Sib. Zh. Vychisl. Mat., 8:2 (2005),  143–148
  16. The search for the sphere of the best cubature formulae invariant under octahedral group of rotations

    Sib. Zh. Vychisl. Mat., 5:4 (2002),  367–372
  17. New cubature formulae invariant under the octahedral group of rotations for a sphere

    Sib. Zh. Vychisl. Mat., 4:3 (2001),  281–284
  18. Cubature formulas on a sphere that are invariant with respect to octahedron rotation groups

    Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998),  34–41
  19. Cubature formulas of higher orders of accuracy for a sphere that are invariant with respect to a tetrahedron group

    Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996),  5–9
  20. Cubature formulae for a sphere which are invariant with respect to the tetrahedral group

    Zh. Vychisl. Mat. Mat. Fiz., 35:3 (1995),  459–466


© Steklov Math. Inst. of RAS, 2026