|
|
Publications in Math-Net.Ru
-
Cubature formulas on the sphere that are invariant under dihedral rotation groups
Sib. Zh. Vychisl. Mat., 28:1 (2025), 89–99
-
The search of the best cubature formulas on the sphere that are invariant under the icosahedral rotation group
Sib. Zh. Vychisl. Mat., 26:4 (2023), 415–430
-
Cubature formulas on the sphere that are invariant under the transformations of the dihedral groups of rotations with inversion
Sib. Èlektron. Mat. Izv., 18:1 (2021), 703–709
-
Cubature formulas on the sphere that are invariant under the transformations of the dihedral group of rotations $D_4$
Sib. Èlektron. Mat. Izv., 17 (2020), 964–970
-
Cubature formulas on a sphere that are invariant under the transformations of the dihedral group of rotations with inversion $D_{3d}$
Sib. Èlektron. Mat. Izv., 16 (2019), 1196–1204
-
Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $\mathrm{D}_{5d}$
Sib. Èlektron. Mat. Izv., 15 (2018), 389–396
-
Cubature formulas on a sphere invariant under the symmetry groups of regular polyhedrons
Sib. Èlektron. Mat. Izv., 14 (2017), 190–198
-
The cubature formulas on a sphere invariant to the icosahedral group of rotations with inversion
Sib. Zh. Vychisl. Mat., 20:4 (2017), 413–423
-
Cubature formulas on a sphere invariant under the dihedral group D2h
Sib. Èlektron. Mat. Izv., 13 (2016), 252–259
-
Cubature formulas on a sphere invariant under the dihedral group of rotations with inversion $\mathrm{D_{4h}}$
Sib. Èlektron. Mat. Izv., 12 (2015), 457–464
-
Cubature formulas on a sphere invariant under the tetrahedral group with inversion
Sib. Èlektron. Mat. Izv., 11 (2014), 372–379
-
The cubature formulas on a sphere invariant with respect to a dihedral group of rotations with inversion $D_{6h}$
Sib. Zh. Vychisl. Mat., 16:1 (2013), 57–62
-
An analog to Gaussian quadrature implemented on a specific trigonometric basis
Sib. Zh. Vychisl. Mat., 13:4 (2010), 439–450
-
The cubature formulas on a sphere that are invariant with respect to the icosahedral group of rotations
Sib. Zh. Vychisl. Mat., 11:4 (2008), 433–440
-
The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere
Sib. Zh. Vychisl. Mat., 8:2 (2005), 143–148
-
The search for the sphere of the best cubature formulae invariant under octahedral group of rotations
Sib. Zh. Vychisl. Mat., 5:4 (2002), 367–372
-
New cubature formulae invariant under the octahedral group of rotations for a sphere
Sib. Zh. Vychisl. Mat., 4:3 (2001), 281–284
-
Cubature formulas on a sphere that are invariant with respect to octahedron rotation groups
Zh. Vychisl. Mat. Mat. Fiz., 38:1 (1998), 34–41
-
Cubature formulas of higher orders of accuracy for a sphere that are invariant with respect to a tetrahedron group
Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996), 5–9
-
Cubature formulae for a sphere which are invariant with respect to the tetrahedral group
Zh. Vychisl. Mat. Mat. Fiz., 35:3 (1995), 459–466
© , 2026