RUS  ENG
Full version
PEOPLE

Vatulyan Alexandr Ovanesovitsch

Publications in Math-Net.Ru

  1. Identification of variable thermomechanical characteristics in the class of polynomials for the thermoelasticity model

    Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2025, no. 4,  4–13
  2. Optimisation of mechanical properties of viscoelastic structures

    Izv. Saratov Univ. Math. Mech. Inform., 24:4 (2024),  552–566
  3. On a new approach to identifying inhomogeneous mechanical properties of elastic bodies

    Izv. Saratov Univ. Math. Mech. Inform., 24:2 (2024),  209–221
  4. About the deformation of the lamina cribrosa of the eye

    Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2024, no. 2,  21–32
  5. Some analytical solutions in problems of optimization of variable thermal conductivity coefficient

    Vladikavkaz. Mat. Zh., 26:3 (2024),  33–46
  6. Inverse problem of thermoelectricity for a functionally graded layer

    Vladikavkaz. Mat. Zh., 26:1 (2024),  68–84
  7. Investigation of coefficient inverse problems taking into account rheology for functionally graded materia

    Izvestiya Vuzov. Severo-Kavkazskii Region. Natural Science, 2023, no. 3,  4–12
  8. Size-dependent model of electroelasticity for a solid coated cylinder

    Vladikavkaz. Mat. Zh., 25:4 (2023),  29–40
  9. Contact problem for functionally graded orthotropic strip

    Izv. Saratov Univ. Math. Mech. Inform., 22:4 (2022),  479–493
  10. Solution of the inverse problem of two thermomechanical characteristics identification of a functionally graded rod

    Izv. Saratov Univ. Math. Mech. Inform., 22:2 (2022),  180–195
  11. Scale-dependent deformation model of a layered rectangle

    Vladikavkaz. Mat. Zh., 24:4 (2022),  48–57
  12. Study of inverse problem of thermoelasticity for inhomogeneous materials

    Vladikavkaz. Mat. Zh., 24:2 (2022),  75–84
  13. Waves in a viscoelastic cylindrical waveguide with a defect

    Izv. Saratov Univ. Math. Mech. Inform., 21:3 (2021),  352–367
  14. On the identification problem of the thermomechanical characteristics of the finite functionally graded cylinder

    Izv. Saratov Univ. Math. Mech. Inform., 21:1 (2021),  35–47
  15. Detachment of inhomogeneous coating

    Prikl. Mekh. Tekh. Fiz., 62:6 (2021),  138–145
  16. Solution of the problem of gradient thermoelasticity for a coated strip

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163:2 (2021),  181–196
  17. Delamination of a coating lying on an elastic base

    Prikl. Mekh. Tekh. Fiz., 61:1 (2020),  133–143
  18. Yuri Fedorovich Korobeinik (on his 90's anniversary)

    Vladikavkaz. Mat. Zh., 22:3 (2020),  151–157
  19. On the peculiarities of solving the coefficient inverse problem of heat conduction for a two-part layer

    Izv. Saratov Univ. Math. Mech. Inform., 19:4 (2019),  409–423
  20. Identification of inhomogeneous characteristics of prestressed pyromaterials

    Chebyshevskii Sb., 19:2 (2018),  183–198
  21. On some models of indentation for functionally-graded coatings

    Izv. Saratov Univ. Math. Mech. Inform., 18:4 (2018),  421–432
  22. Studying of elastoplastic properties of coal specimens using indentation technique

    Izv. Saratov Univ. Math. Mech. Inform., 18:4 (2018),  412–420
  23. Determination of the inhomogeneous preliminary stress-strain state in a piezoelectric disk

    Prikl. Mekh. Tekh. Fiz., 59:3 (2018),  181–190
  24. Restoration of parameters in the boundary conditions for an inhomogeneous cylindrical waveguide

    Vladikavkaz. Mat. Zh., 20:2 (2018),  29–37
  25. On the properties of the dispersion set for an inhomogeneous cylindrical waveguide

    Vladikavkaz. Mat. Zh., 20:1 (2018),  50–60
  26. Identification of properties of inhomogeneous plate in the framework of the Timoshenko model

    Izv. Saratov Univ. Math. Mech. Inform., 17:4 (2017),  419–430
  27. Determination of attaching parameters of inhomogeneous beams in the presence of damping

    Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016),  449–456
  28. Wave processesin a hollow cylinderin an inhomogeneous prestress field

    Prikl. Mekh. Tekh. Fiz., 57:4 (2016),  182–191
  29. On the Cauchy problem in the theory of coefficient inverse problems for elastic bodies

    Vladikavkaz. Mat. Zh., 18:2 (2016),  31–40
  30. About the Specifics of Identification Thermomechanical Characteristics of Functionally Graded Materials

    Izv. Saratov Univ. Math. Mech. Inform., 14:3 (2014),  329–335
  31. Reconstruction of inhomogeneous characteristics of a transverse inhomogeneous layer in antiplane vibrations

    Prikl. Mekh. Tekh. Fiz., 55:3 (2014),  146–153
  32. One method of determining the elastic properties of inhomogeneous solids

    Prikl. Mekh. Tekh. Fiz., 53:2 (2012),  137–147
  33. The inverse coefficient problem for dissipative operators and identification of the properties of viscoelastic materials

    Vladikavkaz. Mat. Zh., 14:3 (2012),  31–44
  34. On some problems of reconstruction of inhomogeneous pre-stressed state in elastic solids

    Izv. Saratov Univ. Math. Mech. Inform., 9:4(2) (2009),  25–32
  35. Various methods of reconstruction of a cavity in an orthotropic layer

    Prikl. Mekh. Tekh. Fiz., 50:3 (2009),  181–189
  36. On a variational approach to the investigation of inverse coefficient problems in the theory of elasticity

    Vladikavkaz. Mat. Zh., 11:1 (2009),  3–8
  37. Identification of a cavity in an elastic rod in the analysis of transverse vibrations

    Prikl. Mekh. Tekh. Fiz., 49:6 (2008),  152–158
  38. Oscillations of an inhomogeneous elastic layer

    Prikl. Mekh. Tekh. Fiz., 47:3 (2006),  157–164
  39. Fundamental solutions for stationary vibrations of an orthotropic elastic medium

    Prikl. Mekh. Tekh. Fiz., 45:5 (2004),  131–139
  40. Variational principle of thermoelectroelasticity and its application to the problem of vibrations of a thin-wall member

    Prikl. Mekh. Tekh. Fiz., 43:1 (2002),  196–201
  41. Flexural vibrations of a piezoelectric bimorph with a cut internal electrode

    Prikl. Mekh. Tekh. Fiz., 42:1 (2001),  184–189
  42. A method of determining the piezoelectric modulus of a nonuniformly polarized rod

    Prikl. Mekh. Tekh. Fiz., 40:3 (1999),  204–210
  43. On boundary integral equations in magnetoelectroelasticity

    Dokl. Akad. Nauk, 348:5 (1996),  600–602
  44. Plane waves and fundamental solutions in linear thermoelectroelasticity

    Prikl. Mekh. Tekh. Fiz., 37:5 (1996),  135–142
  45. On the reconstruction of the shape of a defect near the surface in a half-space

    Dokl. Akad. Nauk, 344:6 (1995),  753–755
  46. Control of the surface of a sectioned bimorph plate

    Prikl. Mekh. Tekh. Fiz., 36:4 (1995),  131–136
  47. On boundary integral equations of the first kind in dynamic problems in the anisotropic theory of elasticity

    Dokl. Akad. Nauk, 333:3 (1993),  312–314
  48. Vibrations of a cantilevered piezoceramic plate with a corrugated intermediate layer

    Prikl. Mekh. Tekh. Fiz., 34:4 (1993),  118–123
  49. Vibrations of an orthotropic half-plane with a cavity

    Prikl. Mekh. Tekh. Fiz., 34:2 (1993),  123–127
  50. Vibrations of an elastic orthotropic layer with a cavity

    Prikl. Mekh. Tekh. Fiz., 32:1 (1991),  95–97

  51. Abanin Alexander Vasil'evich (on his 70's anniversary)

    Vladikavkaz. Mat. Zh., 27:1 (2025),  150–153
  52. Leonid Yu. Kossovich. To the 75th birthday anniversary

    Izv. Saratov Univ. Math. Mech. Inform., 24:1 (2024),  150–157
  53. Sergej Nikolaevich Melikhov (on his 60's anniversary)

    Vladikavkaz. Mat. Zh., 22:2 (2020),  98–99
  54. Abanin Alexander Vasil'evich (on his 65's anniversary)

    Vladikavkaz. Mat. Zh., 22:1 (2020),  93–97
  55. To the 65-th anniversary of prof. A. G. Kusraev

    Vladikavkaz. Mat. Zh., 20:2 (2018),  111–119
  56. Aleksandr Vasil'evich Abanin (on the occasion of his 60th anniversary)

    Vladikavkaz. Mat. Zh., 17:1 (2015),  78–81
  57. Aleksandr Nikolaevich Kabel'kov (1947–2011)

    Vladikavkaz. Mat. Zh., 14:2 (2012),  74–77


© Steklov Math. Inst. of RAS, 2026