RUS  ENG
Full version
PEOPLE

Nosko Vladimir P

Publications in Math-Net.Ru

  1. The Horizon of a Random Cone Field under a Trend: One-Dimensional Distributions

    Teor. Veroyatnost. i Primenen., 46:4 (2001),  792–800
  2. A study of high-level excursions of Gaussian fields: a new approach that uses convexity

    Teor. Veroyatnost. i Primenen., 35:1 (1990),  148–153
  3. Asymptotic Distributions of Characteristics of High-Level Overshoots for a Homogeneous Gaussian Random Field

    Teor. Veroyatnost. i Primenen., 32:4 (1987),  722–733
  4. On the distribution of the arc length of a high-level excursion of a stationary Gaussian process

    Teor. Veroyatnost. i Primenen., 31:3 (1986),  592–594
  5. Local structure of a homogeneous Gaussian random field in the neighbourhood of high-level points

    Teor. Veroyatnost. i Primenen., 30:4 (1985),  722–736
  6. Asymptotic distributions of curvatures of a homogeneous Gaussian random field at points of high local maxima

    Teor. Veroyatnost. i Primenen., 29:4 (1984),  782–787
  7. Weak convergence of the horyzon for the random field of cones in the expanding strip

    Teor. Veroyatnost. i Primenen., 27:4 (1982),  693–706
  8. The horizon of the random field of the cones on the plane. Mean number of horizon corners

    Teor. Veroyatnost. i Primenen., 27:2 (1982),  259–269
  9. On the definition of the number of excursions above fixed level by a random field

    Teor. Veroyatnost. i Primenen., 24:3 (1979),  592–596
  10. On the mean number of some level curve points of a random field on the plane

    Teor. Veroyatnost. i Primenen., 24:1 (1979),  181–184
  11. A limit theorem for a probabilistic model of corrosion

    Teor. Veroyatnost. i Primenen., 21:4 (1976),  831–839
  12. Local structure of Gaussian random fields in the neighborhood of high-level shines

    Dokl. Akad. Nauk SSSR, 189:4 (1969),  714–717
  13. Characteristics of excursions over a high level for a Gaussian process and its envelope

    Teor. Veroyatnost. i Primenen., 14:2 (1969),  302–314

  14. Book review: Rosenblatt M. “Gaussian and Non-Gaussian Linear Time Series and Random Fields”

    Teor. Veroyatnost. i Primenen., 47:1 (2002),  200–202


© Steklov Math. Inst. of RAS, 2026