RUS  ENG
Full version
PEOPLE

Kvitko Aleksandr Nikolaevich

Publications in Math-Net.Ru

  1. Solution of the local boundary problem for nonlinear stationary system with account of the computer systems verification

    Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 11:2 (2024),  303–315
  2. Solution of a non-local problem of terminal control

    Zap. Nauchn. Sem. POMI, 539 (2024),  86–101
  3. Solution of the terminal control problem for a nonlinear stationary system in a bounded domain

    Zh. Vychisl. Mat. Mat. Fiz., 64:10 (2024),  1836–1850
  4. Solution of a local boundary problem for a non-linear non-stationary system in the class of discrete controls

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:1 (2022),  18–36
  5. On a method for solving a local boundary value problem for a nonlinear stationary controlled system in the class of differentiable controls

    Zh. Vychisl. Mat. Mat. Fiz., 61:4 (2021),  555–570
  6. A method for solving a local boundary-value problem for a nonlinear controlled system

    Avtomat. i Telemekh., 2020, no. 2,  48–61
  7. A system of models for constructing a progressive income tax schedule

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 16:1 (2020),  4–18
  8. Solving a local boundary value problem for a nonlinear nonstationary system in the class of feedback controls

    Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018),  70–82
  9. Solving the global boundary problem for a nonlinear nonstationary controllable system

    Avtomat. i Telemekh., 2015, no. 1,  57–80
  10. On one method of solving a boundary problem for a nonlinear nonstationary controllable system taking measurement results into account

    Avtomat. i Telemekh., 2012, no. 12,  89–109
  11. A method for solving a boundary value problem for a nonlinear control system with incomplete information

    Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1393–1407
  12. A method for solving a boundary problem for a nonlinear controlled system

    Zh. Vychisl. Mat. Mat. Fiz., 46:7 (2006),  1241–1250
  13. On a Control Problem

    Differ. Uravn., 40:6 (2004),  740–746
  14. The Riemann problem with a $p$-nonsingular coefficient for a generalized analytic vector in the case of a complex contour on a Riemann surface

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 9,  19–23
  15. On the theory of the Riemann boundary value problem for generalized analytic functions, in the case of a multiple contour on a plane

    Sibirsk. Mat. Zh., 20:3 (1979),  659–663

  16. The memory of N. V. Zubov

    Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2011, no. 2,  97–98


© Steklov Math. Inst. of RAS, 2026