RUS  ENG
Full version
PEOPLE

Pyatnitskii Evgenii Serafimovich

Publications in Math-Net.Ru

  1. Controllability of mechanical systems in the class of controls bounded together with their derivatives

    Avtomat. i Telemekh., 2004, no. 8,  14–38
  2. Piecewise Linear Lyapunov Functions and the Localization of Spectrum of Stable Matrices

    Avtomat. i Telemekh., 2001, no. 9,  25–36
  3. Control of mechanical systems under uncertainty conditions in the absence of quantitative information on the current state

    Avtomat. i Telemekh., 1999, no. 5,  164–169
  4. Control of a mechanical black box

    Avtomat. i Telemekh., 1999, no. 3,  202–212
  5. Control of the orientation of a rigid body moving in an aerodynamic medium

    Dokl. Akad. Nauk, 353:6 (1997),  751–755
  6. Criteria for the complete robust controllability of mechanical systems with bounded controls

    Dokl. Akad. Nauk, 352:5 (1997),  620–623
  7. Controllability of Classes of Lagrangian Systems with Bounded Controls

    Avtomat. i Telemekh., 1996, no. 12,  29–37
  8. Control of elastic mechanical systems with high-rigidity elements

    Avtomat. i Telemekh., 1995, no. 11,  74–86
  9. Stabilizability and universal laws for the control of the motion of a rigid body with allowance for aerodynamic interactions

    Dokl. Akad. Nauk, 342:1 (1995),  49–52
  10. Necessary optimality conditions in terms of generalized Hamilton–Jacobi–Bellman equations with phase constraints

    Trudy Mat. Inst. Steklov., 211 (1995),  62–80
  11. Numerical construction of Lyapunov functions for stochastic systems

    Avtomat. i Telemekh., 1994, no. 6,  53–61
  12. A numerical method for constructing Lyapunov functions and the analysis of the stability of nonlinear dynamical systems on a computer

    Avtomat. i Telemekh., 1994, no. 4,  23–38
  13. Nonlocal design of systems for the stabilization of discrete stochastic control plants

    Avtomat. i Telemekh., 1994, no. 2,  68–78
  14. A method for the synthesis of the control of elastic systems

    Dokl. Akad. Nauk, 338:2 (1994),  194–196
  15. Design of systems for the stabilization of programmed motions of nonlinear control plants

    Avtomat. i Telemekh., 1993, no. 7,  19–37
  16. The dynamics and control of a multilink transportation mechanism

    Avtomat. i Telemekh., 1993, no. 1,  141–153
  17. Generalized Hamilton–Jacobi–Bellman equations in optimal control problems with phase constraints. II

    Avtomat. i Telemekh., 1992, no. 11,  46–56
  18. Generalized Hamilton–Jacobi–Bellman equations in optimal control problems with phase constraints

    Avtomat. i Telemekh., 1992, no. 10,  21–28
  19. Periodic motions and criteria for absolute stability of nonlinear time-dependent systems

    Avtomat. i Telemekh., 1991, no. 10,  63–73
  20. The existence of periodic motions and criteria for the absolute stability of nonlinear time-dependent systems in the three-dimensional case

    Avtomat. i Telemekh., 1991, no. 5,  68–79
  21. Boundary of the domain of asymptotic stability of selector-linear differential inclusions and the existence of periodic solutions

    Dokl. Akad. Nauk SSSR, 321:4 (1991),  687–691
  22. A method for constructing invariant functions and the study of phase portraits of dynamical systems on a computer

    Differ. Uravn., 26:7 (1990),  1116–1126
  23. Controlling the motion of manipulation robots through decomposition with an allowance for the dynamics of actuators

    Avtomat. i Telemekh., 1989, no. 9,  67–81
  24. Design of hierarchical control systems for mechanical and electromechanical processes by decomposition. II

    Avtomat. i Telemekh., 1989, no. 2,  57–71
  25. Design of hierarchical control systems for mechanical and electromechanical processes by decomposition. I

    Avtomat. i Telemekh., 1989, no. 1,  87–99
  26. Synthesis of the control of mechanical systems by the goal potential method

    Dokl. Akad. Nauk SSSR, 308:3 (1989),  557–560
  27. The minimax principle of mechanics and its application to optimal control problems

    Dokl. Akad. Nauk SSSR, 304:3 (1989),  533–537
  28. Stabilization of mechanical and electromechanical systems

    Avtomat. i Telemekh., 1988, no. 12,  40–51
  29. The decomposition principle in the control of mechanical systems

    Dokl. Akad. Nauk SSSR, 300:2 (1988),  300–303
  30. Development of piecewise-quadratic Lyapunov functions for nonlinear control systems

    Avtomat. i Telemekh., 1987, no. 10,  30–38
  31. The gradient method of designing Lyapunov functions in problems of absolute stability

    Avtomat. i Telemekh., 1987, no. 1,  3–12
  32. Criteria for the stability of selector-linear differential inclusions

    Dokl. Akad. Nauk SSSR, 297:1 (1987),  37–40
  33. A criterion of absolute stability of nonlinear sampled-data control systems in the form of numerical procedures

    Avtomat. i Telemekh., 1986, no. 9,  31–39
  34. Lyapunov functions detemining the necessary and sufficient conditions for absolute stability of nonlinear nostationary control systems. III

    Avtomat. i Telemekh., 1986, no. 5,  38–49
  35. The Lyapunov functions determining the necessary and sufficient conditions for absolute stability of nonlinear nostationary control systems. II

    Avtomat. i Telemekh., 1986, no. 4,  5–15
  36. Lyapunov finctions defining the necessary and sufficient conditions for absolute stability of nonlinear nonstationary control systems. I.

    Avtomat. i Telemekh., 1986, no. 3,  63–73
  37. Numerical methods of designing lyapunov functions and absolute stability criteria as numerical procedures

    Avtomat. i Telemekh., 1983, no. 11,  52–63
  38. Extremal choice of nonlinearities in dynamic controlled systems. II

    Avtomat. i Telemekh., 1983, no. 1,  60–69
  39. Extremal choice of nonlinearities in dynamic controlled systems. I

    Avtomat. i Telemekh., 1982, no. 12,  29–38
  40. Absolute instability of nonlinear nonstationarysystems. III

    Avtomat. i Telemekh., 1982, no. 3,  29–41
  41. Absolute instability of nonlinear nonstationary systems. II

    Avtomat. i Telemekh., 1982, no. 2,  17–28
  42. Absolute in stability of nonlinear nonstationary systems. I

    Avtomat. i Telemekh., 1982, no. 1,  19–27
  43. Global functions of sets in the theory of alternative choice. II

    Avtomat. i Telemekh., 1977, no. 5,  103–113
  44. Global function of sets in the theory of alternative selection

    Avtomat. i Telemekh., 1977, no. 3,  111–125
  45. Conditions for applicability of the method of harmonic balance to systems with a hysteresis nonlinearity (in the case of the filter hypothesis)

    Avtomat. i Telemekh., 1976, no. 11,  16–27
  46. A small parameter in the problem of justifying the harmonic balance method (in the case of the filter hypothesis). II

    Avtomat. i Telemekh., 1975, no. 2,  5–12
  47. A small parameter in the problem of justifying the harmonic balance method (in the case of the filter hypothesis). I

    Avtomat. i Telemekh., 1975, no. 1,  5–21
  48. Uniform stability under parametric perturbations

    Differ. Uravn., 9:7 (1973),  1262–1274

  49. Qualitative Theory of Dynamical Systems. The Role of Stability-Preserving Mappings. Anthony N. Michel, Kaining Wang, and Bo Hu. 2nd Edition. New York: Marcel Dekker, 2000.

    Avtomat. i Telemekh., 2002, no. 6,  184–186
  50. Adaptive manipulator control (movement learning algorithms)

    Avtomat. i Telemekh., 1983, no. 2,  124–134
  51. A review of «System dynamics» collected papers

    Avtomat. i Telemekh., 1976, no. 8,  200


© Steklov Math. Inst. of RAS, 2026