RUS  ENG
Full version
PEOPLE

Gaponenko Yurii Lukich

Publications in Math-Net.Ru

  1. A regularization method in the space of piecewise-continuous functions

    Dokl. Akad. Nauk SSSR, 313:3 (1990),  533–537
  2. The stability of the solution of an integral equation of the first kind on bounded and compact sets

    Zh. Vychisl. Mat. Mat. Fiz., 29:1 (1989),  15–25
  3. On the accuracy of the reconstruction of a piecewise-continuous velocity function of a medium from an approximately given vertical hodograph

    Dokl. Akad. Nauk SSSR, 298:3 (1988),  589–593
  4. A method of linearizing the inverse problem for the wave equation

    Zh. Vychisl. Mat. Mat. Fiz., 27:10 (1987),  1516–1526
  5. On the boundedness of the solution of a second-order linear equation

    Differ. Uravn., 22:5 (1986),  890–891
  6. The parameter-extension method for an equation of the second kind with a Lipschitz-continuous and monotone operator

    Zh. Vychisl. Mat. Mat. Fiz., 26:8 (1986),  1123–1131
  7. The problem of the stability of the solution of an integral equation of the first kind in a weak compactum

    Zh. Vychisl. Mat. Mat. Fiz., 26:7 (1986),  970–980
  8. Accuracy of the solution of a nonlinear ill-posed problem with a finite error level

    Zh. Vychisl. Mat. Mat. Fiz., 25:5 (1985),  772–777
  9. On the accuracy of a solution to an ill-posed problem with a finite level of errors

    Dokl. Akad. Nauk SSSR, 277:5 (1984),  1044–1048
  10. The method of successive iterations for an equation of the second kind

    Dokl. Akad. Nauk SSSR, 277:2 (1984),  281–283
  11. Degree of solvability and exactness of the solution of an ill-posed problem for a fixed level of error

    Zh. Vychisl. Mat. Mat. Fiz., 24:4 (1984),  483–490
  12. Solvability of elementary two-point boundary value problems

    Differ. Uravn., 19:11 (1983),  1843–1847
  13. A condition for solvability of quasilinear boundary value problems

    Differ. Uravn., 19:10 (1983),  1667–1672
  14. The contracting compactum principle for solving ill-posed problems

    Dokl. Akad. Nauk SSSR, 263:6 (1982),  1293–1296
  15. A posteriori estimates of the solutions of ill-posed inverse problems

    Dokl. Akad. Nauk SSSR, 263:2 (1982),  277–280
  16. Solvability of a class of nonlinear operator equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 9,  3–7
  17. Accuracy of solutions of nonlinear ill-posed problem

    Izv. Vyssh. Uchebn. Zaved. Mat., 1982, no. 4,  13–18
  18. The contracting compacta principle for nonlinear ill-posed problems

    Sibirsk. Mat. Zh., 23:5 (1982),  42–51
  19. On a class of completely regularizable mappings

    Zh. Vychisl. Mat. Mat. Fiz., 22:1 (1982),  3–9
  20. Method of contracting compacta for solving nonlinear ill-posed problems

    Zh. Vychisl. Mat. Mat. Fiz., 21:6 (1981),  1365–1375
  21. On a class of equations that are regularizable in the space of continuous functions

    Dokl. Akad. Nauk SSSR, 252:1 (1980),  21–24
  22. Successive approximation method for solution of nonlinear extremal problems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 5,  12–15
  23. The method of consistent approximation for the solution of nonlinear operator equations

    Zh. Vychisl. Mat. Mat. Fiz., 18:3 (1978),  767–769
  24. A regularizer in the space of continuous functions

    Zh. Vychisl. Mat. Mat. Fiz., 18:2 (1978),  379–384
  25. The discrete Green's function method for solving linear ill-posed problems

    Dokl. Akad. Nauk SSSR, 229:2 (1976),  269–271
  26. A paired integro-difference operator with vanishing symbol in the space $L_p(-\infty,\infty)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 1976, no. 5,  108–111
  27. A method of regularization for operator equations of the first kind

    Zh. Vychisl. Mat. Mat. Fiz., 16:3 (1976),  577–584
  28. A certain method for the solution of extremal problems with constraints on the phase coordinates

    Zh. Vychisl. Mat. Mat. Fiz., 14:3 (1974),  779–783
  29. A method of regularization of an extremal problem for a continuous convex functional

    Dokl. Akad. Nauk SSSR, 184:1 (1969),  12–15
  30. A regularization method for a continuous convex functional

    Zh. Vychisl. Mat. Mat. Fiz., 9:5 (1969),  1046–1056
  31. The construction of strongly convergent minimizing sequences for a continuous convex functional

    Zh. Vychisl. Mat. Mat. Fiz., 9:2 (1969),  286–299


© Steklov Math. Inst. of RAS, 2026