RUS  ENG
Full version
PEOPLE

Zuber Irina Efremovna

Publications in Math-Net.Ru

  1. Multidimensional output stabilization of a certain class of uncertain systems

    Avtomat. i Telemekh., 2018, no. 9,  3–17
  2. New classes of stabilizable uncertain systems

    Avtomat. i Telemekh., 2016, no. 10,  93–108
  3. Using the direct and indirect control to stabilize some classes of uncertain systems. II. Pulse and discrete systems

    Avtomat. i Telemekh., 2012, no. 9,  72–87
  4. Using the direct and indirect control to stabilize some classes of uncertain systems. I. Continuous systems

    Avtomat. i Telemekh., 2012, no. 8,  76–90
  5. Invariant stabilization of classes of uncertain systems with delays

    Avtomat. i Telemekh., 2011, no. 9,  161–172
  6. Vector control design for robust stabilization of a class of uncertain systems

    Avtomat. i Telemekh., 2009, no. 11,  117–125
  7. Robust stabilization of continuous indeterminate systems

    Avtomat. i Telemekh., 2009, no. 2,  101–108
  8. Stability of quasistationary systems

    Avtomat. i Telemekh., 2007, no. 6,  24–34
  9. Stabilization of nonstationary pulse systems

    Avtomat. i Telemekh., 2004, no. 5,  29–37
  10. Stabilization of Discrete Time-Varying Systems by Output Control

    Avtomat. i Telemekh., 2002, no. 3,  85–96
  11. Synthesis of an exponentially stable observer for observable nonlinear systems

    Avtomat. i Telemekh., 1998, no. 3,  20–27
  12. Synthesis of an exponentially stable observer for linear nonstationary systems with one output

    Avtomat. i Telemekh., 1995, no. 5,  42–49
  13. Exponential stabilization of nonstationary systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1993, no. 4,  76–81
  14. Design of exponentially stable control systems for a range of nonlinear processes

    Avtomat. i Telemekh., 1989, no. 8,  33–40
  15. On a modal approach to the stabilization of discrete time-dependent linear control systems

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 11,  35–37
  16. Stabilization of a nonlinear plant represented as a sequence of nonlinear one-dimensional elements

    Avtomat. i Telemekh., 1986, no. 2,  156–159
  17. Structure of monotone stabilized digital

    Avtomat. i Telemekh., 1981, no. 7,  93–99
  18. К вопросу об оптимальной структуре обратных связей монотонно стабилизированной импульсной системы

    Upravliaemie systemy, 1969, no. 3,  23–32


© Steklov Math. Inst. of RAS, 2026