RUS  ENG
Full version
PEOPLE

Serkov Dmitrii Aleksandrovich

Publications in Math-Net.Ru

  1. On the existence of a non-anticipative selection for a non-anticipative multivalued map

    Uspekhi Mat. Nauk, 80:4(484) (2025),  175–176
  2. Continuous dependence of sets in a space of measures and a program minimax problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 30:2 (2024),  277–299
  3. On the construction of partially non-anticipative multiselector and its application to dynamic optimization problems

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:3 (2024),  410–434
  4. Transfinite Version of the Program Iteration Method in a Game Problem of Approach for an Abstract Dynamical System

    Trudy Inst. Mat. i Mekh. UrO RAN, 28:3 (2022),  176–187
  5. On guarantee optimization in control problem with finite set of disturbances

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 31:4 (2021),  613–628
  6. On a representation of the solvability set in the retention problem

    Russian Universities Reports. Mathematics, 25:131 (2020),  290–298
  7. Non-anticipative strategies in guarantee optimization problems under functional constraints on disturbances

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  553–571
  8. On the Construction of a Nonanticipating Selection of a Multivalued Mapping

    Trudy Inst. Mat. i Mekh. UrO RAN, 25:3 (2019),  232–246
  9. On a dynamic game problem with an indecomposable set of disturbances

    Ural Math. J., 5:2 (2019),  72–79
  10. On the existence of a non-anticipating selection of non-anticipating multivalued mapping

    Tambov University Reports. Series: Natural and Technical Sciences, 23:124 (2018),  717–725
  11. On the construction of a predicate truth set

    Izv. IMI UdGU, 50 (2017),  45–61
  12. Control with a guide in the guarantee optimization problem under functional constraints on the disturbance

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  82–94
  13. Transfinite sequences in the method of programmed iterations

    Trudy Inst. Mat. i Mekh. UrO RAN, 23:1 (2017),  228–240
  14. Unlocking of predicate: application to constructing a non-anticipating selection

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:2 (2017),  283–291
  15. Implementation of the programmed iterations method in packages of spaces

    Izv. IMI UdGU, 2016, no. 2(48),  42–67
  16. An approach to analysis of the set of truth: unlocking of predicate

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:4 (2016),  525–534
  17. The elements of the operator convexity in the construction of the programmed iteration method

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:3 (2016),  82–93
  18. On fixed point theory and its applications to equilibrium models

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 9:1 (2016),  20–31
  19. On approximation of joint fixed points

    J. Comp. Eng. Math., 2:4 (2015),  67–72
  20. Programmed iteration method and operator convexity in an abstract retention problem

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:3 (2015),  348–366
  21. Risk minimization under functional constraints on the dynamic disturbance

    Izv. IMI UdGU, 2014, no. 2(44),  3–95
  22. On the unimprovability of full-memory strategies in problems of guaranteed result optimization

    Trudy Inst. Mat. i Mekh. UrO RAN, 20:3 (2014),  204–217
  23. Optimal risk control under functionally restricted disturbances

    Mat. Teor. Igr Pril., 5:1 (2013),  74–103
  24. On the unimprovability of full memory strategies in the risk minimization problem

    Trudy Inst. Mat. i Mekh. UrO RAN, 19:4 (2013),  222–230
  25. Optimal control under $L_p$-compact constraints on the disturbance

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 3,  79–87
  26. On the Model Motions in Control Problem with Functional Constraints on Disturbances

    Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:2 (2013),  62–73
  27. Guaranteed control under functionally restricted disturbances

    Mat. Teor. Igr Pril., 4:2 (2012),  71–95
  28. Optimal guarantee under the disturbances of Caratheodory type

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 2,  74–83
  29. On some properties of the control problem under a program interference in a formalization based on the minimax risk (regret) criterion

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:1 (2010),  140–151
  30. On a property of the constructive motions. II

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 3,  64–69
  31. On a property of constructive motions

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2009, no. 3,  98–103
  32. Minimax risk (regret) strategy for one class of control problems under dynamic disturbances

    Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  192–200
  33. Minimax risk (regret) strategy for control problems for the system under dynamic disturbances

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2008, no. 2,  132–135
  34. Cтратегии минимаксного риска (сожаления) в системе с простыми движениями

    Trudy Inst. Mat. i Mekh. UrO RAN, 13:3 (2007),  121–135
  35. Strongly optimal strategies

    Dokl. Akad. Nauk SSSR, 321:2 (1991),  258–262
  36. Positional control of a parabolic system and finite-dimensional approximating models

    Dokl. Akad. Nauk SSSR, 288:6 (1986),  1317–1321
  37. Synthesis of positional control of a parabolic system and the stochastic maximin

    Dokl. Akad. Nauk SSSR, 283:3 (1985),  553–559


© Steklov Math. Inst. of RAS, 2026