RUS  ENG
Full version
PEOPLE

Gubarev Yurii Gennad'evich

Publications in Math-Net.Ru

  1. On the stability of a particular class of one-dimensional states of dynamic equilibrium of the Vlasov–Poisson electron gas

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 166:1 (2024),  36–51
  2. The stability of a radial convergence of a cylindrical shell consisting of viscous incompressible liquid

    TVT, 58:1 (2020),  101–106
  3. The Miles Theorem and the first boundary value problem for the Taylor–Goldstein equation

    Sib. Zh. Ind. Mat., 22:3 (2019),  24–38
  4. The Miles theorem and new particular solutions to the Taylor–Goldstein equation

    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158:2 (2016),  156–171
  5. On the stability of one class of steady axisymmetric flows of an ideal liquid in a magnetic field

    Zhurnal Tekhnicheskoi Fiziki, 82:1 (2012),  14–18
  6. Sufficient conditions for linear long-wave instability of steady-state axisymmetric flows of an ideal liquid with a free boundary in an azimuthal magnetic field

    Zhurnal Tekhnicheskoi Fiziki, 81:3 (2011),  28–34
  7. Об устойчивости струйных магнитогидродинамических течений

    Sib. Zh. Ind. Mat., 12:2 (2009),  38–53
  8. Stability of steady-state shear jet flows of an ideal fluid with a free boundary in an azimuthal magnetic field against small long-wave perturbations

    Prikl. Mekh. Tekh. Fiz., 45:2 (2004),  111–123
  9. Instability of the quiescent state of an ideal conducting medium in a magnetic field

    Prikl. Mekh. Tekh. Fiz., 40:2 (1999),  148–155
  10. On spontaneous swirling in axisymmetric flows

    Prikl. Mekh. Tekh. Fiz., 36:4 (1995),  52–59
  11. Instability of a self-gravitating compressible medium

    Prikl. Mekh. Tekh. Fiz., 35:4 (1994),  68–77


© Steklov Math. Inst. of RAS, 2026