RUS  ENG
Full version
PEOPLE

Plachenov Alexandr Borisovich

Publications in Math-Net.Ru

  1. Unidirectional pulses: relatively undistorted quasi-spherical waves, Fourier–Bessel integrals, and plane-waves decompositions

    Optics and Spectroscopy, 132:4 (2024),  429–433
  2. Unipolar and quasi-unipolar electromagnetic pulses

    Optics and Spectroscopy, 131:2 (2023),  212–215
  3. Helmholtz–Gauss beams with quadratic radial dependence

    Optics and Spectroscopy, 130:2 (2022),  260–267
  4. Unidirectional single-cycle and sub-cycle pulses

    Optics and Spectroscopy, 128:12 (2020),  1865–1867
  5. Acoustic, electromagnetic and elastic wavefield energy expression via its asymptotics at large times and distances

    Zap. Nauchn. Sem. POMI, 493 (2020),  269–287
  6. Bessel–Gaussian shifted paraxial beams: I

    Optics and Spectroscopy, 126:3 (2019),  311–318
  7. Border effect, fractal structures and brightness oscillations in non-silver photographic materials

    Nanosystems: Physics, Chemistry, Mathematics, 6:1 (2015),  133–139
  8. Analytical description of a Gaussian beam in a ring resonator with a nonplanar axial contour and an odd number of mirrors

    Kvantovaya Elektronika, 41:1 (2011),  43–54
  9. Tilted nonparaxial beams and packets for the wave equation with two spatial variables

    Zap. Nauchn. Sem. POMI, 393 (2011),  224–233
  10. Exact solutions of the $m$-dimensional wave equation from paraxial ones. Further generalization of the Bateman solution

    Zap. Nauchn. Sem. POMI, 393 (2011),  167–177
  11. Analytical description of a Gaussian beam in a ring resonator with a nonplanar axial contour and an even number of mirrors

    Kvantovaya Elektronika, 39:3 (2009),  261–272
  12. Analytic method for the construction of the fundamental mode of a resonator in the form of a Gaussian beam with complex astigmatism

    Kvantovaya Elektronika, 37:3 (2007),  290–298
  13. Complex ABCD transformations for optical ring cavities with losses and gain

    Kvantovaya Elektronika, 27:1 (1999),  87–92
  14. Nonstationary modes of a thin and curved waveguide in a multiray zone (the uniform asymptotics)

    Zap. Nauchn. Sem. LOMI, 99 (1980),  127–137
  15. Ungtationary modes in a thin and curved waveguide of variable width

    Zap. Nauchn. Sem. LOMI, 89 (1979),  210–218


© Steklov Math. Inst. of RAS, 2026