RUS  ENG
Full version
PEOPLE

Zaikin Oleg Sergeevich

Publications in Math-Net.Ru

  1. Revisiting Dobbertin constraints for SAT-based preimage attacks on round-reduced MD4 compression function

    Prikl. Diskr. Mat. Suppl., 2025, no. 18,  265–270
  2. Preimage attack on 5-round cryptographic hash function JH-256 via parallel SAT solver

    Prikl. Diskr. Mat. Suppl., 2025, no. 18,  262–264
  3. Preimage attack on 44-step MD4 compression function with weakened last step

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  90–93
  4. SAT-based analysis of SHA-3 competition finalists

    Num. Meth. Prog., 25:3 (2024),  259–273
  5. Algebraic cryptanalysis of 9 rounds of lightweight block cipher Simon32/64

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  65–70
  6. Inverting 29-step MD5 compression function via SAT

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  36–40
  7. Duplicates of conflict clauses in CDCL derivation and their usage to invert some cryptographic functions

    Num. Meth. Prog., 20:1 (2019),  54–66
  8. Propositional encoding of direct and inverse round transformations in attacks on some block ciphers

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  76–79
  9. Preimage attack on MD4 hash function as a problem of parallel sat-based cryptanalysis

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 6:3 (2017),  16–27
  10. Estimations of cryptographic resistance of ciphers in the Trivium family to SAT-based cryptanalysis

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  46–48
  11. Applying high-performance computing to searching for triples of partially orthogonal Latin squares of order 10

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 5:3 (2016),  54–89
  12. Application of algorithms solving SAT problem to cryptanalysis of hash functions of MD family

    Prikl. Diskr. Mat. Suppl., 2015, no. 8,  139–142
  13. Problems of search for collisions of cryptographic hash functions of the MD family as variants of Boolean satisfiability problem

    Num. Meth. Prog., 16:1 (2015),  61–77
  14. The search for pairs of orthogonal diagonal latin squares of order 10 in the volunteer computing project SAT@home

    Vestn. YuUrGU. Ser. Vych. Matem. Inform., 4:3 (2015),  95–108
  15. CluBORun: tool for utilizing idle resources of computing clusters in BOINC computing

    Informatsionnye Tekhnologii i Vychslitel'nye Sistemy, 2014, no. 4,  3–11
  16. Application of the Monte Carlo method for estimating the total time of solving the SAT problem in parallel

    Num. Meth. Prog., 15:1 (2014),  22–35
  17. Constructing decomposition sets for distributed solution of sat problems in volunteer computing project sat@home

    UBS, 43 (2013),  138–156
  18. Algorithms for constructing decomposition sets in application to coarse-grained parallelization of SAT problems

    Bulletin of Irkutsk State University. Series Mathematics, 5:4 (2012),  79–94
  19. Using volunteer computation to solve cryptographic problems

    Prikl. Diskr. Mat. Suppl., 2012, no. 5,  107–108
  20. Solving of cryptanalysis problems in grid systems (by the example of BOINC)

    Prikl. Diskr. Mat., 2011, no. supplement № 4,  66–67
  21. Parallel algorithms for solving SAT-problems in application to optimization problems with Boolean constraints

    Num. Meth. Prog., 12:1 (2011),  205–212
  22. A hybrid approach (SAT+ROBDD) to cryptanalysis of stream encryption systems

    Prikl. Diskr. Mat., 2009, no. supplement № 1,  19–20
  23. Analysis of some cryptographic primitives on computer clusters

    Prikl. Diskr. Mat., 2008, no. 2(2),  120–130
  24. Large-block parallelism technology in sat problems

    Probl. Upr., 2008, no. 1,  43–50
  25. Incomplete algorithms in the large-block parallelism of combinatorial problems

    Num. Meth. Prog., 9:1 (2008),  108–118


© Steklov Math. Inst. of RAS, 2026