RUS  ENG
Full version
PEOPLE

Egorushkin Oleg Igorevich

Publications in Math-Net.Ru

  1. On the solution of a general algebraic equation by power series and applications in the theory of formal grammars

    Prikl. Diskr. Mat., 2023, no. 60,  106–113
  2. An analogue of the Kronecker — Cappelli theorem for systems of non-commutative linear equations generating linear languages

    Prikl. Diskr. Mat. Suppl., 2023, no. 16,  124–126
  3. Polynomial grammars generating an infinite set of languages

    Prikl. Diskr. Mat. Suppl., 2022, no. 15,  78–80
  4. On a solution of polynomial grammars and the general algebraic equation

    Prikl. Diskr. Mat. Suppl., 2021, no. 14,  176–178
  5. Geometric condition of formal grammars solvability

    Prikl. Diskr. Mat. Suppl., 2020, no. 13,  106–108
  6. Syntax analysis of programs by the method of integral representations

    Prikl. Diskr. Mat. Suppl., 2018, no. 11,  128–130
  7. On application of multidimensional complex analysis in formal language and grammar theory

    Prikl. Diskr. Mat., 2017, no. 37,  76–89
  8. An analogue of implicit mapping theorem to formal grammars

    Prikl. Diskr. Mat. Suppl., 2017, no. 10,  149–151
  9. On solvability of systems of symbolic polynomial equations

    J. Sib. Fed. Univ. Math. Phys., 9:2 (2016),  166–172
  10. On consistency of systems of symbolic polynomial equations and their application

    Prikl. Diskr. Mat. Suppl., 2016, no. 9,  119–121
  11. Analitic approach to context-free languages in the Greibach normal form

    Prikl. Diskr. Mat., 2009, no. supplement № 1,  73–74
  12. An analitic approach in the theory of context-free languages Greibach normal form

    Prikl. Diskr. Mat., 2009, no. 3(5),  112–116
  13. On a solving of algebraic equations systems associated with context-free languages

    Prikl. Diskr. Mat., 2008, no. 2(2),  8–11

  14. On solving linear homogeneous grammars generating linear languages

    Prikl. Diskr. Mat. Suppl., 2024, no. 17,  123–125


© Steklov Math. Inst. of RAS, 2026