|
|
Publications in Math-Net.Ru
-
Weakly strongly $2$-nil-clean rings
Algebra i Analiz, 38:1 (2026), 123–138
-
A note on uniformly totally strongly inert subgroups of Abelian groups
J. Sib. Fed. Univ. Math. Phys., 18:4 (2025), 467–473
-
Rings whose non-invertible elements are weakly nil-clean
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:1 (2025), 47–74
-
On some extensions of $\pi$-regular rings
Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 10, 22–33
-
On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups
Mat. Zametki, 114:5 (2023), 716–727
-
Weakly invo-clean rings having weak involution
Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:1 (2022), 18–25
-
$n$-Torsion clean and almost $n$-torsion clean matrix rings
Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1, 52–63
-
On some decompositions of matrices over algebraically closed and finite fields
J. Sib. Fed. Univ. Math. Phys., 14:5 (2021), 547–553
-
A note on periodic rings
Vladikavkaz. Mat. Zh., 23:4 (2021), 109–111
-
Strongly and solidly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 71, 5–12
-
Commutative weakly tripotent group rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 2, 24–29
-
Representing matrices over fields as square-zero matrices and diagonal matrices
Chebyshevskii Sb., 21:3 (2020), 84–88
-
Symmetrization in clean and nil-clean rings
Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020), 154–160
-
$n$-Torsion regular rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 1, 20–29
-
On a property of nilpotent matrices over an algebraically closed field
Chebyshevskii Sb., 20:3 (2019), 401–404
-
A note on commutative nil-clean corners in unital rings
Bulletin of Irkutsk State University. Series Mathematics, 29 (2019), 3–9
-
Left-right cleanness and nil cleanness in unital rings
Bulletin of Irkutsk State University. Series Mathematics, 27 (2019), 28–35
-
Commutative weakly invo-clean group rings
Ural Math. J., 5:1 (2019), 48–52
-
Commutative feebly invo-clean group rings
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 61, 5–10
-
A note on essentially indecomposable $n$-summable Abelian $p$-groups
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 51, 15–18
-
On $p^n$Bext projective abelian $p$-groups
Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46, 21–23
-
On strongly almost $m$-$\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups
Algebra Discrete Math., 20:2 (2015), 182–202
-
Some isomorphism results on commutative group algebras
Vladikavkaz. Mat. Zh., 14:2 (2012), 31–34
-
On some properties of extensions of commutative unital rings
Vladikavkaz. Mat. Zh., 11:4 (2009), 7–10
-
Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded
Vladikavkaz. Mat. Zh., 11:3 (2009), 8–9
-
Quasi-complete Q-groups are bounded
Vladikavkaz. Mat. Zh., 10:1 (2008), 24–26
-
On a decomposition equality in modular group rings
Vladikavkaz. Mat. Zh., 9:2 (2007), 3–8
-
A note on weakly $\aleph_1$-separable $p$-groups
Vladikavkaz. Mat. Zh., 9:1 (2007), 30–37
-
On the coproducts of cyclics in commutative modular and semisimple group rings
Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 2, 45–52
-
On the balanced subgroups of modular group rings
Vladikavkaz. Mat. Zh., 8:2 (2006), 29–32
-
Addendum: a note on commutative nil-clean corners in unital rings
Bulletin of Irkutsk State University. Series Mathematics, 31 (2020), 150–151
© , 2026