RUS  ENG
Full version
PEOPLE

Danchev Peter Vasil'evich

Publications in Math-Net.Ru

  1. Weakly strongly $2$-nil-clean rings

    Algebra i Analiz, 38:1 (2026),  123–138
  2. A note on uniformly totally strongly inert subgroups of Abelian groups

    J. Sib. Fed. Univ. Math. Phys., 18:4 (2025),  467–473
  3. Rings whose non-invertible elements are weakly nil-clean

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 35:1 (2025),  47–74
  4. On some extensions of $\pi$-regular rings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 10,  22–33
  5. On Abelian Groups Having Isomorphic Proper Strongly Invariant Subgroups

    Mat. Zametki, 114:5 (2023),  716–727
  6. Weakly invo-clean rings having weak involution

    Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:1 (2022),  18–25
  7. $n$-Torsion clean and almost $n$-torsion clean matrix rings

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 1,  52–63
  8. On some decompositions of matrices over algebraically closed and finite fields

    J. Sib. Fed. Univ. Math. Phys., 14:5 (2021),  547–553
  9. A note on periodic rings

    Vladikavkaz. Mat. Zh., 23:4 (2021),  109–111
  10. Strongly and solidly $\omega_1$-weak $p^{\omega\cdot 2+n}$-projective abelian $p$-groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 71,  5–12
  11. Commutative weakly tripotent group rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2020, no. 2,  24–29
  12. Representing matrices over fields as square-zero matrices and diagonal matrices

    Chebyshevskii Sb., 21:3 (2020),  84–88
  13. Symmetrization in clean and nil-clean rings

    Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020),  154–160
  14. $n$-Torsion regular rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019, no. 1,  20–29
  15. On a property of nilpotent matrices over an algebraically closed field

    Chebyshevskii Sb., 20:3 (2019),  401–404
  16. A note on commutative nil-clean corners in unital rings

    Bulletin of Irkutsk State University. Series Mathematics, 29 (2019),  3–9
  17. Left-right cleanness and nil cleanness in unital rings

    Bulletin of Irkutsk State University. Series Mathematics, 27 (2019),  28–35
  18. Commutative weakly invo-clean group rings

    Ural Math. J., 5:1 (2019),  48–52
  19. Commutative feebly invo-clean group rings

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 61,  5–10
  20. A note on essentially indecomposable $n$-summable Abelian $p$-groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 51,  15–18
  21. On $p^n$Bext projective abelian $p$-groups

    Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46,  21–23
  22. On strongly almost $m$-$\omega_1$-$p^{\omega+n}$-projective abelian $p$-groups

    Algebra Discrete Math., 20:2 (2015),  182–202
  23. Some isomorphism results on commutative group algebras

    Vladikavkaz. Mat. Zh., 14:2 (2012),  31–34
  24. On some properties of extensions of commutative unital rings

    Vladikavkaz. Mat. Zh., 11:4 (2009),  7–10
  25. Weakly $\aleph_1$-separable quasi-complete abelian $p$-groups are bounded

    Vladikavkaz. Mat. Zh., 11:3 (2009),  8–9
  26. Quasi-complete Q-groups are bounded

    Vladikavkaz. Mat. Zh., 10:1 (2008),  24–26
  27. On a decomposition equality in modular group rings

    Vladikavkaz. Mat. Zh., 9:2 (2007),  3–8
  28. A note on weakly $\aleph_1$-separable $p$-groups

    Vladikavkaz. Mat. Zh., 9:1 (2007),  30–37
  29. On the coproducts of cyclics in commutative modular and semisimple group rings

    Bul. Acad. Ştiinţe Repub. Mold. Mat., 2006, no. 2,  45–52
  30. On the balanced subgroups of modular group rings

    Vladikavkaz. Mat. Zh., 8:2 (2006),  29–32

  31. Addendum: a note on commutative nil-clean corners in unital rings

    Bulletin of Irkutsk State University. Series Mathematics, 31 (2020),  150–151


© Steklov Math. Inst. of RAS, 2026