RUS  ENG
Full version
PEOPLE

Kulaev Ruslan Chermenovich

Publications in Math-Net.Ru

  1. Lower bounds for the leading eigenvalue of the Laplacian on a graph

    Mat. Zametki, 117:2 (2025),  270–284
  2. Qualitative properties of solutions to fourth-order differential equations on graphs

    Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 208 (2022),  37–48
  3. Sturm Separation Theorems for a Fourth-Order Equation on a Graph

    Mat. Zametki, 111:6 (2022),  947–952
  4. Darboux system and separation of variables in the Goursat problem for a third order equation in $\mathbb {R}^3$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4,  43–53
  5. Conservation laws for Volterra chain with initial step-like condition

    Ufimsk. Mat. Zh., 11:1 (2019),  61–67
  6. Darboux system as three-dimensional analog of Liouville equation

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 12,  60–69
  7. Darboux system: Liouville reduction and an explicit solution

    Trudy Mat. Inst. Steklova, 302 (2018),  268–286
  8. Some properties of Jost functions for Schrödinger equation with distribution potential

    Ufimsk. Mat. Zh., 9:4 (2017),  60–73
  9. On the disconjugacy of a differential equation on a graph

    Vladikavkaz. Mat. Zh., 19:3 (2017),  31–40
  10. On the Oscillation Property of Green's Function of a Fourth-Order Discontinuous Boundary-Value Problem

    Mat. Zametki, 100:3 (2016),  375–387
  11. On the disconjugacy property of an equation on a graph

    Sibirsk. Mat. Zh., 57:1 (2016),  85–97
  12. Disconjugacy of fourth-order equations on graphs

    Mat. Sb., 206:12 (2015),  79–118
  13. Comparison theorems for Green function of a fourth order boundary value problem on a graph

    Ufimsk. Mat. Zh., 7:4 (2015),  99–108
  14. Oscillatory properties of the Green function of discontinuous boundary value problem for equations of the fourth order

    Vladikavkaz. Mat. Zh., 17:1 (2015),  47–59
  15. The source function of the chain of rods with elastic supports

    Vladikavkaz. Mat. Zh., 16:2 (2014),  49–61
  16. The Green function of the boundary value problem on a star-shaped graph

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 2,  56–66
  17. On the sing of the Green's function of the boundary value problem for the fourth-order equation on a graph

    Vladikavkaz. Mat. Zh., 15:4 (2013),  19–29
  18. About Green's function of a parabolic problem on a graph

    Vladikavkaz. Mat. Zh., 14:4 (2012),  32–40
  19. On existence of the solution of parabolic problem on the graph with a boundary conditions, containing derivatives on time

    Vladikavkaz. Mat. Zh., 13:3 (2011),  42–52
  20. Existence theorem for a parabolic mixed problem on a graph with boundary conditions containing time derivatives

    Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010),  139–148
  21. On resolvability of a parabolic problem on the graph

    Ufimsk. Mat. Zh., 2:4 (2010),  74–84
  22. The finite integral transform method for a parabolic differential equation on a graph

    Sibirsk. Mat. Zh., 50:2 (2009),  350–355
  23. On the geometric multiplicity of the eigenvalues of a boundary value problem on a graph

    Vladikavkaz. Mat. Zh., 10:3 (2008),  23–28
  24. Application of finite integral transformations on a graph to the solution of problems in mathematical physics

    Vladikavkaz. Mat. Zh., 9:4 (2007),  15–25
  25. An integral transformation on a graph for a second-order differential operator

    Vladikavkaz. Mat. Zh., 7:2 (2005),  78–85
  26. On the continuous dependence of the points of the spectrum of a boundary value problem, specified on a graph, on the parameters of the agreement conditions

    Vladikavkaz. Mat. Zh., 6:2 (2004),  10–16

  27. V. A. Koibaev (on his 70th anniversary)

    Vladikavkaz. Mat. Zh., 27:3 (2025),  136–138
  28. Alexander Ovanesovich Vatulyan (on his 70th anniversary)

    Vladikavkaz. Mat. Zh., 25:4 (2023),  143–147
  29. In Memory of Alexei Borisovich Shabat (08.08.1937–24.03.2020)

    Vladikavkaz. Mat. Zh., 22:2 (2020),  100–102


© Steklov Math. Inst. of RAS, 2026